```
Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
```


Bromesberrow St Mary's C of E Primary School Maths Curriculum Overview.

We believe that all children can deepen their understanding within mathematics across our school through motivated teachers, courage and perseverance. At Bromesberrow St Mary's Primary School, we are developing the mindsets of both children and staff, building resilience and a 'can do' attitude to be well rounded, motivated and successful mathematicians. With high quality first teaching and expectations, intelligent practice, collaborative learning and intervention and support, all our children will be given every opportunity to develop key concepts and explore mathematics deeply, being positively enabled to Reach for the Stars in their learning of mathematics.

Skill it: demonstrates fluency - being quick in solving questions (procedural knowledge).
Apply it: demonstrates verbal and written reasoning. Children are able to explain why something has happened, how it can be done (proving) and what needs to be done to correct it - declarative knowledge/conceptual knowledge. This is an area for children to show a 'can do' attitude and persevere to improve, developing resilient learners at Bromesberrow.

Deepen it: demonstrates problem solving skills, which we encourage to be open ended. Children will show a depth in understanding a specific mathematical concept in a range of different ways and in different scenarios. Transferring the skills they have learnt in that concept to wider fields (conditional knowledge).

Early Years Foundation Stage:

In Preschool and Reception note that the definition alter slightly in line with the characteristics of effective teaching within Early Years:

Skill it - through adult modelling and imitation, children will play and explore by giving things a go.
Apply it - children being able to say if something is right/wrong or good/bad and are actively learning where they are concentrating and willing to try out new things.

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Deepen it- children use their learning in different circumstances and can change something using concrete materials to make it correct; demonstrating an ability in creativity and thinking critically to make links.

The Early Years Foundation Stage provides our children with the fundamental components to mathematics and our curriculum reflects this by ensuring the children are provided with the opportunities to develop a deep understanding within mathematics with a 'can do' attitude. Within Early Years, their mathematical development is hugely influenced by our children being able to explore, practice and enjoy Maths through concrete and pictorial representations to deepen understanding. To support this deepened understanding, the children will continuously be developing five key skills throughout all their learning objectives and continuous provision;

Subitising: instantly recognise small quantities.
Counting: regular opportunities to practise counting forward and back. This is broken into 5 principles:

- The one-one principle: children assigning one number name to each object that is being counted. Children need to ensure they count each object only once ensuring they have counted every object.
- The stable-order principle: children understand when counting, the numbers have to be said in a certain order.
- The cardinal principle: children understand that the number name assigned to the final object in a group is the total number in that group.
- The abstraction principle: involves children understanding that anything can be counted including things that cannot be touched including sounds and movements e.g. jumps.
- The order-irrelevance principle: involves children understanding that the order we count a group of objects is irrelevant. There will still be the same number.

Composition: recognise that all quantities are composed of smaller quantities.
Sorting and matching: notice similarities and differences as they match and sort objects in different contexts.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare and order: compare and order quantities and measures by noticing more than/fewer than and equal amounts.

Pre School				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Develop fast recognition of up to 3 objects, without having to count them individually ('subitising').	Point to small groups of two or three objects: "Look, there are two!" Occasionally ask children how many there are in a small set of two or three.	Able to correct someone or themselves if recognition is incorrect.	Child picks up equipment as part of their play independently and is able to subitise quickly and accurately.	Count One, two, three, four, five. More than, fewer than, circles, rectangles, triangles, cuboids, sides, corners, straight, flat, round, sharp corner, straight edge, pointy, curvy, off, on, under, on top, on, beside, next to, between, down,
Recite numbers past 5.	Regularly say the counting sequence accurately.	Able to correct someone or themselves if recognition is incorrect.	In a variety of playful contexts, inside and outdoors, forwards and backwards, sometimes going to high numbers. For example: hide and seek, rocket-launch countdowns.	
Say one number for each item in order: 1,2,3,4,5.	Count things and then repeat the last number. For example: "1, 2, 3 -3 cars". Point out the number of things whenever possible; so, rather than just 'chairs', 'apples' or 'children', say 'two chairs', 'three apples', 'four children'.	Recognise if someone has counted correctly or incorrectly and able to verbalise if something is incorrect.	Children to use this counting within their own independent play.	to, between, down, large, small, exactly, size, length, long, short, heavy, light, first, then, after, before, morning, afternoon, evening
Know that the last number reached when counting a	Ask children to get you a number of things, and emphasise the total	Children able to say yes or no to the number of objects they have in relation to what they	Children independently show an adult remembering earlier conversations e.g 'l	and night-time, earlier, later, too late, too soon, in a

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

small set of objects tells you how many there are in total ('cardinal principle').	number in your conversation with the child.	have been asked. Some children may then self-correct/ some may need adult support e.g. you need 2 more cars. Now we have 4 cars	have 3 cars' may then go and find another set of 3 objects.	minute, yesterday, tomorrow 2
Show 'finger numbers' up to 5	When counting shows on fingers. Adult models counting up to 5 on fingers.	Able to say if the number of fingers is right or wrong	Transfer this into counting other objects.	
Link numerals and amounts: for example, showing the right number of objects to match the numeral, up to 5.	Use small numbers to manage the learning environment. Suggestions: have a pot labelled ' 5 pencils' or a crate for ' 3 trucks'. Draw children's attention to these throughout the session and especially at tidy-up time: "How many pencils should be in this pot?" or "How many have we got?" etc.	Able to say if the number of objects is correct or incorrect and can change where needed.	Able to transfer knowledge of amount into different scenarios.	
Experiment with their own symbols and marks as well as numerals.	Encourage children in their own ways of recording, for example how many balls they managed to throw through the hoop. Provide numerals nearby for reference.	Talk about the numerals they have written.	Use in play - independently	
Solve real world mathematical problems with numbers up to 5.	Discuss mathematical ideas throughout the day, inside and outdoors. Suggestions: - "I think Adam has got more crackers..." "I wonder how many sticks I need to make a potion"	'I have given Adam 4 crackers' - actually give child three crackers. Child should recognise if that is right or wrong.	Support children to solve problems using fingers, objects and marks: "There are four of you, but there aren't enough chairs...."	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Compare
 quantities using
 language: 'more
 than', 'fewer than'. | Draw children's attention to
 differences and changes in
 amounts, such as those in stories
 like 'The Enormous Turnip'. 'You
 have more than me' | Correctly say who has more or
 who has fewer. | Able to share objects out so one has
 more or one has fewer etc. can do this
 through visually seeing a bigger pile and
 then count after. |
| :--- | :--- | :--- | :--- | :--- |
| Talk about and
 explore 2D and 3D
 shapes (for
 example, circles,
 rectangles,
 triangles and
 cuboids) using
 informal and
 mathematical
 language: 'sides',
 'corners';
 'straight', 'flat',
 'round'. | Encourage children to play freely
 with blocks, shapes, shape
 puzzles and shape-sorters.
 Encourage children to talk
 informally about shape properties
 using words like 'sharp corner',
 'pointy' or 'curvy'. Talk about
 shapes as you play with them:
 "We need a piece with a straight
 edge." | What is the same and what is
 different? | When playing independently or in another
 environment, children to spot 2D and 3D
 shapes in those environments and name
 these without any adult intervention. |
| Understand
 position through
 words alone - for
 example, 'The bag
 is under the table,"
 - with no pointing. | Discuss position in real contexts.
 Suggestions: how to shift the
 leaves off a path, or sweep water
 away down the drain. | Is the ball under the table?
 Children able to say yes/no
 and explain accurately where
 it is. | Children use in play. |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { under the bridge and the billy goat } \\ \text { beside the stream." }\end{array} & & \begin{array}{l}\text { Discuss routes and } \\ \text { locations, using } \\ \text { words like 'in front } \\ \text { of' and 'behind'. }\end{array} \\ \begin{array}{l}\text { Take children out to shops or the } \\ \text { park: recall the route and the } \\ \text { order of things seen on the way. } \\ -\quad \text { Adult model the } \\ \text { vocabulary as they make } \\ \text { any route. }\end{array} & \begin{array}{l}\text { Did they go the right way? Yes } \\ \text { or no. Which way should they } \\ \text { have gone? }\end{array} & \begin{array}{l}\text { Set up obstacle courses, interesting } \\ \text { pathways and hiding places for children } \\ \text { to play with freely. When appropriate, ask } \\ \text { children to describe their route and give } \\ \text { directions to each other. }\end{array} \\ \text { Provide complex train tracks, with loops } \\ \text { and bridges, or water-flowing challenges } \\ \text { with guttering that direct the flow to a } \\ \text { water tray, for children to play freely with. } \\ \text { Read children stories such as Rosie's } \\ \text { walk. }\end{array}\right\}$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { and straightening ribbons, } \\ \text { discussing accuracy "is it exactly } \\ \text { the same?" }\end{array} & & \\ \hline \begin{array}{l}\text { Select shapes } \\ \text { appropriately }\end{array} & \begin{array}{l}\text { Flat surfaces for building, a } \\ \text { triangular prism for a roof etc. } \\ \text { Provide a variety of construction } \\ \text { materials like blocks and } \\ \text { interlocking bricks. Provide den- } \\ \text { making materials. Allow children } \\ \text { to play freely with these materials, } \\ \text { outdoors and inside. When } \\ \text { appropriate, talk about the shapes } \\ \text { and how their properties suit the } \\ \text { purpose. }\end{array} & \begin{array}{l}\text { Will this be good to use on the } \\ \text { bottom? }\end{array} & \begin{array}{l}\text { Did that work? Discussion of } \\ \text { why not or why it did. } \\ \text { construction, they adapt and alter what } \\ \text { they are doing to find success. }\end{array} \\ \hline \begin{array}{l}\text { Combine shapes to } \\ \text { make new ones - } \\ \text { an arch, a bigger } \\ \text { triangle etc. }\end{array} & \begin{array}{l}\text { Provide shapes that combine to } \\ \text { make other shapes, such as } \\ \text { pattern blocks and interlocking } \\ \text { shapes, for children to play freely } \\ \text { with. When appropriate, discuss } \\ \text { the different designs that children } \\ \text { make. } \\ \text { Use tidy-up time to match blocks } \\ \text { to silhouettes or fit things in } \\ \text { containers, describing and } \\ \text { naming shapes. Suggestion: } \\ \text { "Where does this triangular one / } \\ \text { cylinder/ cuboid go?" }\end{array} & \begin{array}{l}\text { Explain what their design is } \\ \text { and how they made it. }\end{array} & \begin{array}{l}\text { Able to find what they need to complete } \\ \text { their design independently. }\end{array} \\ \text { Occasionally suggest challenges, so that } \\ \text { children build increasingly more complex } \\ \text { constructions. }\end{array}\right\}$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Reception				
Number				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Able to make comparisons between amounts.	Children shown smaller and larger quantities to compare. Adults model this language. Show children amounts in quantity and size. E.g. more or less cake, size of each item, number of items in each group. Building blocks outside - challenge the children to make a shorter tower and a taller tower. How many crates/blocks did you use? Loose parts - one child grabs a handful as does another child. Does your friend hold more than you, fewer than you or the same amount?	Children given different groups of different sizes/quantities and they are able to explain which one is smaller or larger. Adult could make an error with the expectation of the child correcting them.	Recognise comparison in other day to day activities, such as snack time or when sharing. Children may link this to the idea of fairness.	Number, one, two, three to twenty and beyond, none, count on/up/to/from/down before, after, more, less, many, few, fewer, fewest, smaller, smallest, equal to, the same as, odd, even, digit, numeral, compare, order, size, value, between, halfway between, number
Count 1,2,3	- Subitise or count to find how many objects they have. - Encouraged to make their own collections.	Use cards that show the number and a picture card set that represents the numbers. Show an	Children create their own games and create a scoring system using their knowledge of representing 1,2 and 3.	plus, make, sum, total, altogether, double, half, halve, equals, is the same (including equals

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	- Match number names we say to numerals and quantities. - Use own mark making to represent 1,2,3 e.g. scoring in their own game. - Have a number hunt inside and out. - Prepare dot card for children to call out 1, 2 and 3 depending on the number of dots they see. - Hickory dickory dock nursery rhyme. - Children could count the number of beats on a drum.	example of matching card together. Is this true or false? What is wrong? How can we make this right?		sign), how many more to make...? How many more is...? How much more is...? Subtract, take away, minus, share, share equally, group in pairs, equal groups of, divide, split, whole, equal, one half, number track, tens frame, number cards,
Comparing 1,2 and 3.	Children begin to recognise that as we count, each number is one more than the number before. Similarly as we count back, each number is one less than the previous number. - Use a range of representations to support understanding and encourage children to represent one more/ one less patterns as the count. - Use stories and number songs that count one more or one less. e.g. The Three little bears	Ask children to compare how far they can travel in 3 giant steps or in 1 or 2. In 1, 2 and 3 tip toes. I think we got further when we made 1 step' children should recognise that this is incorrect and correct the mistake.	With the children, count how many items are in a hidden bag? Ask the children to watch as you add one more item to the hidden group. How many will there be now? What if you take one out? Drop stones on marbles into a bucket and children count how many sounds they hear. How many are there? What if we add one more? How do you know? How can we check?	number squares, numicon, count, work out, Subitise, compare, smaller, larger, zero, number bonds, if I add one more how many will there be? If I take one out how many will there be? How do you know? How can we check?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Composition of 1, 2 and 3.
 - Introduce that all numbers are made of smaller numbers.
 Children count on and

 back to four.- Count objects, actions and sounds up to four to find how many.
- Subitise sets of up to 4 objects to find how many.
- Match number names to numerals and quantities.
- Able to say which set has

Explore and notice the different compositions of 2 and 3 e.g. $1+1=2$ $1+1+1=3 \quad 1+2=32+1=3$.

Use hands to make bunny ears - using two hands show me different ways to make 1, 2 and 3.
Create the numbers using numicon. When children are playing with small world - ask the children how many animals they have in one field, how many have we got in the other? Children could make their own collections of up to 4 items.

Have a basket of something interesting to count. Ask the children to count out 4 items and arrange them on a whiteboard.

How many are there altogether? earrange the items. How many are there now? Can you make yours look the same as mine? Can you arrange your 4 in a different pattern to mine? What smaller groups can you see in your 4 ?

Set up a number hunt outside. In the pictures have 4 represented in different ways.

If I have 1 and 1 there will be 3? - Children should recognise this is incorrect and say the correct answer. Encourage children to use fingers or equipment to show the correct answer.

When counting,

 children able to selfcorrect if a mistake has been made or highlight the mistake someone else has made. e.g. there are 4 items but they only count 3 . Child may respond with there are 4! You didn't count this one.' Recount then with the child leading that.Place 1, 2 or 3 items into a feely bag. Ask the children to feel inside the bag and try to count how many there are without looking. Count to check.

With the children, count how many items are in a hidden bag? Ask the children to watch as you add one more item to the hidden group. How many will there be now? What if you take one out?

Could there be zero? What do you notice when you try to make pairs with....
Can you arrange smallest to largest? How many do you have to start? How many do you have now? Why? Can you represent what we did using counters? Read, write, listen, join in, tell me, describe, work out

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

number value (how many of something).	under the bucker to hat and then reveal. Children subitise how many and then run to swat the correct number.		
One more and one less. - Count, subitise and compare number.	Use five frames to represent number and predict how man there would be if you add one and subtract 1. Use songs and stories e.g. 5 current buns/five little ducks Ask children to make a number on a five frame. Can you show me one more? One less? Use a 1-5 number track underneath the five frame. Can you point to the number you made? Can you point to one more and one less than your number?	Show/ say an incorrect way when showing one more or one less. Children should then pick up on the mistake and then correct what you have done.	Provide children with pictures of objects to arrange on the washing line in order. As the children order the pictures encourage them to use the language of one more and one less. What can you tell me about 3 ? Prompt the children to see that 3 is one more than 2 and also one less than 4. Hide one of the cards and ask the children to work out which number is missing. What strategies will they use to work out which number is missing?
Introducing Zero - Know the number name zero. - ' 0 ' in relation to 'nothing there' and 'all gone'	Popular counting back songs like 5 little monkeys jumping on the bed. Children could predict how many monkeys would be left on the bed after one falls off. Encourage children to represent numbers including zero.	Adult to say there are zero apples on the tree when there are more than zero. Children would then correct this mistake and could draw a tree showing zero apples.	Children independently recording zero in games they play that may involve scoring. Able to say there is zero and what zero means for that score.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	'Show me 3 fingers, show me 5 fingers, show me 0 fingers' 'Can you park zero cars in this space?'			
Comparing numbers to five - Continue to recognise that quantities can be more than, fewer/less than or the same as.	Is it fair? Has everyone got the same? Use snack time to reinforce the language use of comparing. 'Hold up more than 3 fingers, fewer than, the same'. Provide opportunities to compare smaller quantities of large items with larger quantities of small items to help children make the distinction between size and quantity. E.g. 2 large balls take up more space than 3 small balls but there are more small balls. Make towers using pebbles - who can make the tallest tower? How many pebbles are in each tower? Does your tower have more or less?	Hold up the incorrect number of fingers e.g. I have more than 3 fingers showing but hold up less than 3. Children should then recognise this mistake and give examples on how to make it correct.	Whilst children are in their continuous hear the language being used independently - being able to comment on if something is fair or unfair due to the quantities they have.	
Composition of 4 and 5 - Explore and notice the different compositions of 4 and 5.	Encourage children to Subitise (instantly recognise these small quantities without counting) throughout this objective. e.g 5 can be made up of $1+1+1+1+1$ or $3+2$	Mistake made in composition of number and would want to see the child self-correct or child is able to correct someone ese and show how to make it correct.	Exploring Possibilities Show the children an empty feely bag. Together, count 4 pebbles into the bag. Take out an unseen amount in your hand. Ask the children to discuss how many could be in your hand and how many could be left in the bag.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Represent, count and compare 6, 7 and 8 in different ways. - Continue to apply counting principles. - Count out required number of objects from a larger group. - Order and compare representation. - Continue to recognise one more/less as they count on/back to 8 . - Children able to link the number symbol (numeral) with its cardinal number value (how many of something).	How many legs does a ladybird have? How many spots? Do you know any other creatures with 6 legs? Use counters to add 6 spots to the other ladybird Can you find more than one way to do it? How many colours do you see in the rainbow? Can you paint a rainbow with 7 colours? Can you make rainbows using objects around th classroom? How many colours did you use? Encourage the children to think about where we see 6,7 , and 8 in everyday life and to make collections of 6,7 and 8 objects in the classroom. Sort these items into 6, 7 and 8 How else could you show 6, 7 , and 8 ?	When counting, miscount the number of objects etc - expect children to self-correct or correct others and prove how to do it correctly.

Children independently able to represen
and count $6,7,8$. They are confident in representing these in different ways and will do so independently in their play.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Making pairs

- Begin to understand a pair is two.
- Children to arrange smal quantities into pairs.
- Begin to notice some quantities will have odd one.

Combining two

 groups.- Combine two groups to find out how many altogether
- Children continue to practise subitising.

Have a basket of unsorted socks or wellies and ask the children to help you sort them into pairs Can they spot which pairs go together? 5
 Why do they match?

Encourage children to investigate making pairs using differe quantities of small world creatures, cubes or counters. Which quantities will make pairs and which will have one left out? D
they notice a pattern?
Draw children's attention to when objects are grouped into twos and calling this a pair.

Tell your partner about the flowers. How many purple flow can you see? How many blue flowers? How many flowers altogether?

Provide an assortment of 1-5 number shapes. Ask the children to choose a number shape. Next, find a friend and combine their shapes to see what numb they can make altogether? Repeat by moving to different friends.

Have objects paired together with an odd one - 'All my objects are in a pair'. Children should recognise that one of the objects is on its own and not in a pair.

When combining tw groups together

Children independently pair items together. They could go on a pair hunt for items and are able to independently pair items together. Recognising that pair is two. Able to clearly explain their pairing rules.

Provide each child with a blue 'pool' and 8 fish. Ask them to arrange their fish into pairs.
Ask the children what they notice.
Ask the children to arrange their fish
in a different way and to discuss the
different compositions of 8 that they notice.
Encourage them to explore the composition of 6 and 7 in a similar way.
You can vary the contexts. For example, cars in a car park, horses in a field, ladybirds on a log.

Spread a set of dominoes out face down. Ask the children to pick a domino and tell their partner how many spots there are on each side. Can their partner tell them how many spots on the domino altogether?
What if my domino has 6 spots? How many could be on each side? Can you draw a domino with 6 spots?
Can you draw more than one? $: \square: 0$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

9 and 10

- Apply counting principles when counting 9 and 10 (forwards and backwards)
- Represent 9 and 10 in different ways.
- Arrange 9 or 10 items into small groups
- Notice that a 10 frame is full when there is 10
- Subitise 9 and 10 e.g. I know it is 9 because I see 3,3 and 3/ 4 and 5.
- Children able to link the number symbol (numeral) with its cardinal number value (how many of something).

Show children a number card and ask them to show you the number using their fingers or other objects.

Finding 9 and 10 using numicon.
Ask children to count out 9 or 10 objects. Can they find different ways to arrange their objects?

Show me 10 beads on a bead string. Show me 9.

Outdoors

Ask the children to build a wall and set up 10 green bottles. Each time a bottle 'accidently falls' ask the children how many have fallen and how many are standing.
Do they always have 10 in total?

Have number cards lined up. Hide one of the cards - can the children spot which one is missing?

Ask the children to help you order a set of number cards up to 10. As you do this, make deliberate mistakes. Can the children spot these and correct you?

> Within children's play, they independently use their knowledge of counting forward and back with 9 and 10. They represent 9 and 10 in the games they play in writing and using objects from their environment. This is done without support.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Comparing numbers to 10. - Make comparisons by lining items up with 1-1 correspondence (match number to object) to compare directly or count each set. - Begin to compare/order 3 or more quantities.	Use cubes to build towers from 1 to 10 . Can the children order the towers? What do they notice? Can they see that each number is one more than the number before? Ask questions to make comparisons for a real purpose. Are more children having sandwiches or dinners? Which book shall we read today? Can you place a cube to vote for your favourite? As you read the stories, compare the quantities in differen parts of the story. E.g. in Cockatoos, are more birds hiding in the bathroom or in the attic? Grab a handful of buttons and count them out onto a tens frame. Children then take it in turns to grab some buttons and count them onto a tens frame. Use these to compare.	Using dominos, children find the domino with 7 spots. Find 6 for fewer but place as more than. Child to spot this mistake and order correctly.	During times in the day children can be using this language independently with numbers up to 10. E.g. voting on a class book/ comparing snack or toys with their peers. 'you have more than me. You have 8 and I have 5'.
Bonds to 10. - Explore number bonds to 10 using real objects in different contexts e.g. there are 10 apples.	Use tens frames of egg boxes. Partially filled - how many more do we need to make 10? Can also use bead strings/fingers.	With a tens frame, have 6 spaces filled in. Say to the children you need three more objects to complete the tens frame. Expectation of children to correct and say that 4 more are needed not three.	How many ways can they find to park 10 cars in 2 car parks? Encourage independency when doing this.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Provide each child with a numicon piece. Ask them to find a partner who can complete the numicon piece to make 10 . 10 hunt: draw a large tens frame on the ground outside. Hide 10 of the same object e.g. duck for children to find. As they children are finding them keep bringing them back to how many they already have and how many more they need to find.		Pots to 10 Provide pots labelled with numbers 1-10 and a selection of loose parts such as beads or cubes. Ask the children to count the correct number of beads into each pot. Can they find 2 pots which have 10 beads in total? Is there more than one way to do it? Can they find a way to make 10 by combining 3 pots? How can they check they have 10 ? Is there more than one possible way? Can they draw what they found?	
Building numbers beyond 10 - Build and identify numbers to 20 and beyond. - Use tens frames, bead strings, tower cubes. - Provide opportunities for children to recognise that numbers 1-9	Show the children 11 using the number shapes or 10 frame. What do the children notice? Can they see whi number is represented? Now build 12. What's the same? What's different? Continue the pattern, ask the children to predict wha numbers come next and how they could represent each number. What happens when they get to 20 and beyond?	Incorrectly match number to representation. Children should correct this mistake.	Provide black outlines of a cityscape for the children to fill using numicon. Independently they see which number fills each tower. They see if they can find more than one way of doing it. They could then go on to create their own cityscape for their peers to complete.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

repeat after every full 10 .	Prepare some number card with numbers up to 20 (and beyond when necessary) show children the number card - they say the number then represent it using numicon. Children to have number card and pictorial cards representing number play snap.			
Counting patterns beyond 10. - Count on beyond 10 - Count back beyond 10 - Count on and back from different starting points	Provide children with representations which clearly show full 10s and part of 10 e.g. 14 one full 10 and 4. Use of a number line and 100 square to support children. Play a game 'I count, you count' - blue is what the adult says, red is what the child says $4,5,67,8,9,10,11,12$, $13,14,15$ etc. $12,11,10,9,8,7$ etc. Provide a set of towers to 20 with one tower missing. Ask the children to order the towers to identify which one is missing. Can they make the missing tower?	Tell the children you are going to make the number 17 on a tens frame. Fill in the incorrect number on the tens frame. Children should recognise the mistake and correct it.	How Many is $100 ?$ Prepare collections of objects, some with exactly 100, some with fewer and some with more. Challenge the children to guess which sets have exactly 100 items. Once they have made their guess, they can check by arranging the objects onto ten 10 frames. Are they surprised? They might also like to make their own collections of 100 Encourage the children to investigate 100 in different ways: How far can you travel in 100 steps? How long would a paper chain with 100 links be? How tall is a tower of 100 linking cubes? (Building the paper chain and tower in 10s, changing the colour after each set of 10, makes it easier to keep track of the ten 10 s)	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Race to 20. Provide children with a number line and counter. Children take it in turns to roll a dice and move the number of spaces. Whoever gets to 20 first wins. Board games such as snakes and ladders can also support learning.		
Adding more - Use real objects to see quantity of a group can be changed by adding more. - Can use language of first, then, now. - Children may start by recounting objects to find total. Once confident encourage children to count on. - Children able to link the number symbol (numeral) with its cardinal	Use tens frames, fingers to support children with number stories. First I had 5, then I added 2 more, now I have 7. Show me 5 fingers. Now show me 2 more. How many fingers now? How do you know there are 7 ? Did you count them all $1,2,3,4,5,6,7$? Is there another way to count them? We know we have 5 on this hand? Can we count on? 6, 7? The children take turns to roll a 1-3 dice and collect 1, 2 or 3 cubes to add to their tower If they are ready, encourage them to count on as they add their cubes. How high can they build their towers before they topple?	When adding more make a mistake when adding on. Children to correct the mistake.	Children to create their own first, now and then stories using small world to support them. You would be expecting to see the children doing this independently.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

number value (how many of something).			
Taking away - Use real objects to see a quantity of a group can be change by taking items away. - Children able to count items to start and take away required amount practically. - Children able to Subitise or recount number left. - Children able to link the number symbol (numeral) with its cardinal number value (how many of something).	Use tens frames, fingers to support children with number stories. Ask the children to show you 5 fingers and then to show you 4. Prompt the children to notice that one less is the same as taking away one. Extend to taking away two fingers or 3 and noticing how many are left each time. Now there are 3 people on the bus.	When taking away make a mistake and encourage children to correct the mistake. They could prove this by showing it on a tens frame to support their explanation.	Children able to play independently: Pick a number card and count out the corresponding number using whatever they wish. One player covers their eyes whilst the second 'steals' some of the objects, hiding them in their hand. The first play has to work out how many object shave been stolen.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Doubling

- Know double means twice as many.
- Able to build doubles using mathematical equipment and real objects.
- Able to build numbers using pair-wise patterns on 10s frames.
- Children able to say doubles as they see them e.g. double 2 is 4.
- Children able to sort and explain doubles.

Sharing and grouping
- Able to share

Children given the opportunity to see \quad When playing the doubles in mirrors/ in barrier games.

Allow the children to explore different ways to build double using real objects and practical equipment.

Play match my quantity: The children sit opposite each other in pairs with a barrier between them and a collection of small items such as pebbles or cubes. One child sets out a quantity. They show their partner quickly and then hide again. Their partner matches the quantity. Then the barrier is removed. Check - is it a double? Which double have we made?

Children take it in turns to roll 2 dice. The score a point each time they roll a double. The first to reach 3 points wins the game.
Provide opportunities for the children to share items equally e.g. sharing cards
barrier game you could deliberately make an incorrect quantity and encourage the children to recognise the mistake and correct it.

Provide a ladybird or butterfly templates and ask the children to draw or us the tweezers to pick up objects to make doubles by adding the same number of objects (pompoms) to each side. How many different doubles can they make? Can they make one which is not a double and tell you why? items equally.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

- Able to show how to share fairly.
- Able to make equal groups.
before playing a game. Sharing a given
before playing a game. Sharing a given number of counters.

This could be achieved during snack time.

Using small world - ask the children to make groups using the small world animals. Can they make groups of 2? What happens if they make groups of 3 ?

equally and explain why.	share ideas on how to share or group these.
Show the children a bowl of strawberries. Explain that you are going to share them into 2 equal groups so there will be half for you and half for your friend. Put a handful straight onto each plate without counting - make sure that one plate clearly has more strawberries than the other. Ask the children if it is fair? Prompt them to explain why this isn't fair and then ask them to show you how to share these strawberries fairly? What happens if another friend arrives? Expect children to say we need to share all the strawberries into three groups equally not 2.	Make Equal Groups This time keep 12 items to share each time but vary the number of teddies and plates. Ask the children to explore sharing the 12 items into equal groups so that each teddy gets the same. If there are 2 teddies will they each get the same? How many are in each group? Are there any items left over? What about 3 teddies? 4 teddies? 5 teddies? Expect children to be doing this independently.

Make Equal Groups

his time keep 12 items to share each time but vary the

Ask the children to explore sharing the 12 items into equal groups so that each teddy gets the same. If there are 2 teddies will they each get the same?
ow many in each group?

What about 3 teddies? 4 teddies? 5 teddies?

Expect children to be doing this independently.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Even and odd

- Children begin to understand that some quantities will be shared into 2 equal groups and some won't.
- Children able to notice some quantities can be grouped into pairs and some will have one left over.
- Able to build pair-wise patterns on a 10s frame.

Ask 5 children to come to the front. Can \quad After pairing something we group the children into pairs? Does anyone not have a partner? Why not? What could we do to solve this problem?
Use of the language 'we have 1 left over because there are an odd number of children'

Encourage the children to investigate whether small quantities are odd or even by sharing into 2 groups and by making pairs. Prompt them to recognise that sometimes

$$
\begin{aligned}
& \text { making pairs. Prompt them to recognise } \\
& \text { there is one left over. }
\end{aligned}
$$

Odd and Even

Ask all the children to collect an odd number of cubes.
Ask them to check each others and compare the different quantities.
Are all the quantities odd? How could you check
Now ask the children to collect one more cube and add it to their set.
How many do you have now?
Do you still have an odd number of cubes?
Ask the children to continue adding one more cube and to discuss what they notice.

What is the largest odd number you can build?
How can you check that it is odd?

Reception						
Geometry						
Objective	Skill it	Apply it	Deepen it	Mathematical talk		
Match and sort identical objects by recognising what is the same and different.	When given objects e.g. socks/wellies they match them together.	Able to recognise if a match or sort has been done incorrectly and are able to explain how to make it correct.	Children able to find something that matches the object given to them that is in a different environment or time.	Match, sort, same, different, group, cube, cuboid, pyramid, sphere, cone, cylinder,		

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Provide children with a selection of shapes that have been drawn around - children match to the correct outline. Children group by: colour, texture, size. Could be sorting blocks in construction or sorting beads into pots. - Read the story of Noah's Ark - talking about matching animals. - Snap card games - Button box	Can you find something that doesn't belong? Find the odd one out. - Adult join children in their play during constructions. Can we build towers that match? Do they look the same? Explain why not if needs be. Create an opportunity for the children to spot a mistake and correct it.	Provide children with objects already sorted and they have to come up with the rule on how it has been sorted. Any sensible rule is correct. - Give child one item with its pair being hidden outside for child to find.	circle, triangle, rectangle, square, shape, flat, curved, straight, round, solid, corner, face, side, make, build, draw, over, under, underneath, above, below, top, bottom, side, on, in, outside, inside, in front, behind, front, back, before, after, beside, next to,
Recognise and copy repeating patterns.	Children shown patterns that include three full units of repeat AB AB AB to copy. Red brick, blue brick, red brick, blue brick, red brick, blue brick. Shown in a range of contexts and ways e.g. sounds, actions, colours, shapes and sizes. e.g. In and out the dusty bluebells. Children say patterns and create their own patterns.	Show the children patterns which have a deliberate mistake. What do they notice? Ask the children to suggest ways to sort out the problem. They might swap the items around which means they will need to continue amending the pattern until the end of the line.	Children create their own patterns for others to follow sharing the rule with others independently. What's My Pattern? Provide a range of different instruments such as drums, beaters, shakers and encourage the children to play and copy simple patterns. This could be made into a game with one child playing a pattern whilst the rest face the other way and listen. The listeners then try and work out which instrument was used and try to replicate the pattern.	forward, backwards, sideways, close, far, though, towards, away from, side, roll, turn, what is the same? What is different, is the pattern correct?, what do you notice about the pattern?, can you make the same sound pattern? Can you make
Triangles and circles. - Know that circles have 1 curved side.	Children can build their own circles and triangles.	Miss name a shape in their play children should correct and encourage them to explain why.	Children to use different resources (e.g. sticks, rope) to independently create their own	pattern? Which shapes can you build? Is there more than one way to

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

- Know that triangles have 3 straight sides	Go on a shape hunt for circles and triangles in everyday objects. Mark make their own circles and triangles. During all activities adults to highlight the feature of triangles and circles. Use 3D shapes to print triangles and circles using the flat faces. Show the children a picture which has been made of different shapes. E.g. a boat, a rocket, a house. What shapes can you see in the picture? How many triangles can you count? Can you make your own picture using the shapes?	Shape jigsaw boards - try and match a triangle with a circle hole. Child should recognise the mistake and correct this, explaining why it won't fit.	triangles and circles in different sizes. Is it possible to make a circle out of sticks?	build the shape? What shape can you make when joining two squares? Two triangles? Can you find a shape like this? Can you build a larger/smaller triangle than this one? Is there more than one way to make this shape?
Spatial awareness - Use positional language	Language model by adults next to, on, over, under, around, though, behind. Build life size journeys and explore these from different perspectives. Where shall we put the car? Where shall we but the horse? Use small world to create models. When doing this highlight positions of different objects.	Place something in small world incorrectly. Say clearly where you have placed the object. Child should pick up on the wrong positional language being used and either correct the language or place the object where the adult said it was in the first place.	Children create their own treasure hunts for their peers to follow. They give different clues which use prepositional language. Children should do this with increased independency.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Language use during tidy up time. Share the story of 'Going on a bear hunt' when reading highlight the prepositional language being used.		
Shapes with 4 sides. - Name a square/rectangle - Know squares/ rectangles have straight sides and 4 corners. - Be taught that squares are special rectangles.	- Children given the opportunity to build their own squares and rectangles. - Go on a shape hunt for squares and rectangles.	Miss say a shape and the children should correct you. Explain why a shape is a square e.g. this is a square because it has 4 straight sides and 4 corners.	Ask the children to investigate which shapes they can make by combining squares, rectangles and triangles in different ways. \square Can you build a small square, a medium square and a large square? You could draw outlines for the children to fill initially. Is there more than 1 way to make this shape? Use matchsticks to build squares and rectangles. What's the smallest size you can make? How many match sticks did you use?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

3D shapes

- Explore and manipulate 3D shapes through block play and modelling.
- Recognise which shapes stack, roll, and why.
- Provided with opportunities to build and construct their own 3D shapes in different ways.
- Introduced to the names of 3D shapes.
- Explore similarities and differences between 3D shapes in their play.
- Compose and decompose shapes so that the children recognise a

Hold vp an object for example a crisp tube or a cereal box. Miss name a shape and Which of the 3-D shapes is this like? Why is it like this?
What other items have this shape?

Show the children a collection of 3-D shapes. Choose one of the shapes. Ask the children to tell their partner as many things as they can about the shape. Can they find another shape like this? Can they find a different shape? How is it

Sort the shapes into groups.
Ask: 'Why did you put these shapes together? How is this set different to this one? Is there another way we could sort them?

Go on a 3D shape hunt.
Children make 3D shapes out of playdough. Conversations had whilst the children make them about the names and properties. Can this shape roll? Can we stack this shape?

Could we build a staircase out of the shapes we have here? Provide children with a range of 3D shapes.

Find 2D shapes within 3D shapes to support the children
encourage children to correctly tell you the name.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

- Understand shapes can be combined and separated to make new shapes.
- Combine shapes in different ways.
- Fit shapes together and brake shapes apart - notice the new shapes created.
- Understand places and models can be replicated.
- Look at replicated places and models from different positions.
- Replicate simple constructions, models, places in stories.
- Make maps and plans to
how the children a set of shapes and ask them to find
the shape which matches the one you hold up. Add challenge by making the shapes more similar and changing the orientations.$\square \bigcirc$

Make a simple shape arrangement.
Make a simple shape arrangement.
Ask the children to match your arrangement exactly,
thinking about which shapes to select and where to
place them in relation to the other shapes.
his can also be done
larger scale outsid

Set up a small world scene and ask the children to describe where things are in relation to other things. Then ask them to move around and look at it from a different view point. Does it look the same? What do they notice?

Show the children some

 different maps, lots of books have maps of the story setting. What can you see on the maps? Which map do they like best? Why do we need maps?Provide some paper rectangles, squares and triangles. Encourage the children to predict which new shapes will be made if the shapes are folded or cut in different ways. Children encourage to explain their prediction and can then move on to investigating to see if they predicted correctly.

What shapes can you build? Can you make them in more than one way?

Tangrams

Encourage the children to explore the differen arrangements and shapes they can build using a tangram
Can they use some of the pieces to make a triangle? Can they join some of the pieces to build a square? Is there more than one way to do this?

Design it

Encourage the children to design their own picture using the pattern blocks.
Can they create a template to help them remember their design?
Can their friends use the template to recreate their design?

Provide each child with a set of items the same as yours.
Provide verbal instructions as you arrange your items for the children to follow. They can't see your items but do it through

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Reception				
Measurement				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Compare and order size, mass and capacity.	What could fit in the box? Which sized item fits where? Children could create homes for different sized bears. Sort items they find into different piles - large/small etc. Provide the children with a large bucket and a small bucket. Children to fill each bucket with sand and count how many scoops it takes.	Children able to explain why an item wouldn't fit in somewhere e.g. 'it is too short/long/tall'	- Children to be using comparison vocabulary when playing with peers and able to problem solve when something doesn't fit to find an appropriate size. - Guess my rule. - Get the children to secretly create their own rule for their peers to guess. - Add a set of balance scales to the playdough area. Children can then compare mass of different sized balls. Problem solve to try and use the scales to balance equal sized dough balls. - What else can we find that weighs the same as your ball of dough? - Baking cupcakes.	Short, tall, long, night, day, morning, afternoon, before, after, today, tomorrow, heavy, heavier than, heaviest, light, lighter than, lightest, longer, shorter, taller, wider, narrower, now, soon, before, then, next, after, yesterday, full, half, empty, holds, container, weigh, weighs, balance, scales, times, days of the week: Monday, Tuesday

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

carried anything heavy. Discuss as a group what could be inside.

Children be a human balance scale - place an item on one hand and then on the other. They tip to the side of the heavier. This could be done using buckets of water adding more in and taking some out to change the balance scales.

Opportunities for comparing length and height will arise naturally during play. This could be they compare the height of their towers or the length of their roads. - Who has the longest scarf? Who can thread the longest string of beads?

Children could draw around their footprint and find objects around the room that are longer than or shorter than their foot. With a group of children make comparisons by ordering their footprints in size order.
their choice.
E.G I think it could be a rock because when I picked a rock up on the beach it was so heavy.

Children may be building in

 construction - adult uses this opportunity to deepen vocabulary use by modelling the correct vocabulary being used. After this - adult could incorrectly describe two blocks e.g.' this is the longer block'. Expect children to correct this language and use the resources to correctly describe.They could group these parcels in
different ways e.g. heavier/lighter.
Are larger parcels always heavier? They are able to find the lightest/heaviest independently and use this vocabulary when sharing.

Show fully and empty using different material. Provide children with different sizes tall/thin/narrow/wide/shallow to investigate the weight of these items.

Using dough: children independently use mathematical language relating to length as they play.
Challenge: provide children with different amounts of dough, which amount can make the longest snake? The shortes snake? Why has this happened? 'Let's find something to measure these' children independently find something suitable to measure e.g. blocks, cubes etc.

[^0]We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Provide the children a mixture of measuring tools to explore e.g. tape measure, ruler, trundle wheels.		Encourage the children to discuss and try different ways to find this out. For example they could count strides or heel-to-toe footsteps or use a trundle wheel. Prompt them to use the language of further, nearer and closer. Encourage them to record their distances using their own methods. Have another throw - did they manage to throw their item further this time?
Time - Order and sequence important times in their day. - Recognise that regular events happen on the same day each week. - Describe and talk about specific events in their lives.	Ask children to see how many tasks they can complete in one minute/ how many circles they can draw in a minute etc.	Children able to actively say the order of events with little support. They can recognise if something in their day has been done in the wrong order. Can spot a change in the visual time table and then has a discussion around this change.	In own play children use stop watches/ hour glass to time activities they do with peers.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Year 1}

\hline \multicolumn{5}{|c|}{Number: Place Value within 10}

\hline Objective \& Skill it \& Apply it \& Deepen it \& Mathematical talk

\hline Sort objects (by characteristi cs) \& \begin{tabular}{l}
How can you sort the objects? How have you grouped the objects? E.G.

Sort the fruit into different groups. Sort the flowers into two groups.

 \&

Are there any different ways they could be sorted?

Can there be more than 2 groups?

Who is correct and why do you think this?

 \&

Are there any different ways they could be sorted?

Group these objects in different ways. How many different ways did you group them?
\end{tabular} \& Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, zero, count (on/up/to/from/dow n), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s), compare, (in) order/ a different order, size, value, between, halfway

\hline
\end{tabular}

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Count | | | |
| :--- | :--- | :--- | :--- | :--- |
| Objects | What does one Represent?
 What number will we say first?
 How many are there in total?
 Can you show me a group of zero? | Line up the objects - is it easier
 to count now? Why?
 When would we count zero? | How many different ways can you find to
 group the objects and find the total? |
| between, above, | | | |
| below, order, | | | |
| ordinal, what | | | |
| does......... | | | |

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count objects from a larger group (children need to be secure on cardinal counting principle)	Give children number cars from 1-10. Ask them to pick a card, then go outside and find that many number of leaves. Sticks etc. Circle 3 balloons.					Circle a group of 2 cats. Did you need to count all the cats? Explain your answer. E.G. I know I don't need to count all the cats because I only needed to circle 2 so once I counted to 2 I could stop.	How many different ways can you group these sweets? Share the total of each group.
Represent Objects	Show me different ways to show the number.........? Using counters, show how many pineapples there are, then write the numerals for each.					Do we always have to use counters to show an amount?	How many ways can you represent 6 apples? Can you show me fewer than 4 sweets? How many ways can you do this? How can you show me that there are more green cars than blue cars?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count backwards	Are the numbers getting greater or smaller? Fill in the empty boxes.	Do we always have to start at 10 when counting back? Alex is counting. How do you know that Alex is counting backwards?	How many different starting points could you have if you wanted to count backwards and stop at 3?
Count one more	How can we show one more? Complete each box using a picture, a numeral and a word.	Teddy rolls the number that is 1 more than the dice below. He says that he rolls 2 Explain his mistake.	Using number cards 0 to 10, how many different ways can you complete the boxes below? Expect children to work systematically to solve this.

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count one less	How can we show one less? Roll a dice, represent the number using counters on a track, and find 1 less. Then complete the sentences. 1 less than \qquad is \qquad \qquad is one less than \qquad	Polly thinks the number of cars is 1 less than 7. Is she correct? Explain why.	Complete the sentence stems. One less than 9 is \qquad One less than \qquad is 7 One less than \qquad is 6 What pattern do you notice with the numbers? What would the next sentence be? Children should recognise that one less than any number is the number before it when counting.
One to one corresponde nce (match objects to a number)	What does match mean? Children match one object with another. Draw sweets for each child so they all get 1 each.	Are there any objects left over? Why has that happened?	Which group of beach balls belongs to the children?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare objects	How can you tell which one has the least/most? Circle the picture with more trees.

Who is correct? Explain your answer.

Whitney has this many cubes in one hand.

She has fewer cubes in the other hand.

How many cubes could she have in her other hand?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order Numbers	Order the dominoes from smallest to greatest. Complete the sentences: - The greatest number is \qquad - \qquad is the smallest number.		What could the number cards be?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Ordinal

 NumbersWhat does first mean? What does last mean? What do we mean by ordinal numbers?

Colour the $7^{\text {th }}$ flower blue. Start counting from the left.

Colour in another flower and complete the sentence.

The \qquad flower is \qquad -.
Two children have used the instructions o make a pattern.
There are four shapes.
The first is a circle.
The last is a square.
The other two shapes are a triangle and a rectangle.
Here are their patterns.
Amir$\triangle \square$ \square
Dora
\qquad
Who is correct?

Write the correct letters in the boxes to crack the code.

p	b	u	z	c	k	s	h	n

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

The number line	Can you label the number line? On the number line, - Circle the number 7 - Underline a number greater than 7 - Draw an arrow to the number that is one less than 5 - Put a box around the smallest number. How many jumps from zero is eight?	What does each mark on the number line represent? Is he correct? Explain why.	Game Roll a die. Place a counter on the number line covering the number shown by the die. Work out how many jumps to 0 and how many to 10 Which is closer? If you rolled a 6 and did three jumps, what numbers could you land on? Can you roll a number where there are 7 and 3 jumps to 10 or 0 ? Which numbers could they be?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 1				
Number: Addition and Subtraction (within 10)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Introduce parts and wholes	Here are some frogs. Can you see two groups of frogs? - How many frogs are in each group? Complete the sentences. \qquad is a part. \qquad is a part. The whole is \qquad	Do you agree? How could you split the tower into parts?	Here are five objects. -00 Put the objects into two groups. Draw the groups. Say out loud for your groups: \qquad is a part. \qquad is a part. The whole is \qquad Is the whole always the same? Compare answers with a partner.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Part-whole model - Recognise number can be partitioned into two or more parts.	Complete the part-whole models by drawing counters and then writing the numerals. Draw the part-whole model that represents the stem sentences: - A part is 4 - A part is 3 - The whole is 7	Can the parts be swapped around? Why? My part whole model is correct. Am I right? Explain how you know.	There are 6 animals. How many different ways can you sort the animals? Complete a part-whole model for each way. Can you partition the animals into more than 2 groups?	What does part mean? What does whole mean? How many where there at the start? Which number represents the total? Number bonds, number line, add,
The addition symbol - Introduced to + and add this with $=$ to make number sentences. - Write number sentences	Here are some counters. Group the counters by colour. Fill in the gaps in the sentence and say it out loud. \qquad red counters plus \qquad yellow counters is equal to \qquad counters. Complete the part-whole model and the number sentence. \square $+$ \square $=$ \square	I have written a number sentence to match the image. $2+3=6$ Am I correct? Explain how you know.	Using the numbers $0-9$, how many ways can you fill in the boxes to make the calculation correct? You can only use each number once. How many different calculations are there? What do you notice?	more, plus, make, sum, total, altogether, inverse, double, near double, half, halve, equals, is the same as (including equals sign), difference between, how many more to, how much more is...?, subtract, take away, minus, how many fewer is...

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Number bonds to 10 - With a focus on the number 10 and continuing to work systematically.	10's frames, bead stings, fingers. Amir shows a number on his fingers. How many more fingers are needed to make 10 ? What would this look like as a number sentence? Use the ten frames to complete the number bonds to 10 $4+\ldots=10$ $5+\ldots=10$	Max needs 10 books. Is he correct? Explain your answer.	Dora has 10 p to spend. Which two items could she buy? How many different ways can she do it? Tommy needs to colour in all of the boxes using two different colours. One box of each colour has been done for him. How many different ways can he colour the boxes?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare number bonds	Concrete resources used to support growing understanding of number bonds and comparison of numbers and number sentences. Match the number bonds that are equal. Can you use ten frames and counters to prove they are equal \square $7+1$ $2+6$ $6+3$ $4+2$ $3+3$	Amir and Whitney have both created their own number bonds. Who do you agree with? Explain your answer.	How many different ways can you complete the number sentence? $3+\ldots<3+\ldots$
Add together (concrete objects) - Accurately use + and = - Able to count all.	If 2 is a part and 5 is a part, what is the whole? \square $+$ \square $=$ \square All these examples being shared should be paired with concrete objects.	There are 9 sweets altogether. 3 have a red wrapper and 7 have a blue wrapper. Is this correct? Explain how you know.	There are 8 cubes. Some are red and some are yellow. How many different ways can you make a total of 8 ?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Add more (number line) - Able to count on.	This can be shown pictorially and then in number sentences. How many tractors are there in total? 0'80 O等 There are \qquad tractors.	True or False? If I add 0 to a number, the number stays the same. Can you use a number line or counters to help you explain your answer?	Children could be given a set of number cards and they need to get to a target number using the number cards they have been given. Change the target number. Children have 4 buckets in front of them with numbers on. They have to throw bean bags into the buckets to reach a target number that has been given to them. Then move this on to them independently working out the highest number they can make following a set of rules you provide.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Addition problems - Support children in understanding what the question is asking them before solving - Encourage number bond use.	4 boys and 3 girls are playing at the park. How many children are there in total? \qquad $+$ \qquad = \qquad	Kim and Mo have some bricks. Who has more bricks? How do you know?	Ron tells Tiny a number story about balloons. Tiny writes a number sentence to match the story. $8+1=9$ What is Ron's story?
Finding a part - Use number bond knowledge to solve missing number problems	Complete the part-whole model and use it of ofli in the number sentences. 5 is a part, _is a part, 9 is the whole.	Jed and Ada have 8 sweets altogether. Jed says, How many sweets does Ada have? Prove it. Children can show this through drawing different coloured sweets or using resources.	Find all the ways to complete the number sentence below using the number cards provided. 8 0 2 six \square $+6=$ \square

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Take away - How many are left? - Introduced to language of subtraction. - Recognise that zero is important when subtracting as you take nothing away. Once confident: - Introduce the subtract symbol.	First, then, now language can be used to support the children in understanding the concept of how many left. Use everyday examples to support subtraction e.g. flying away or eating. There were 7 birds in a tree and 3 flew away. Complete the sentences. At first there were _ birds. Then __ flew away. Now there are __ birds in the tree. Tom has 9 toy cars. He gives 5 of them away. How many does he have left? \square - \square $=$ \square	Ava had less than 10 plums and ate some. She says, How many plums could Ava have had to start with? Use a number line to support thinking and explanation. How many calculations can you complete? \square $=7-$ \square Why can't the digits 8 or 9 be used?	Some cakes have been eaten. There are 2 cakes left. How many cakes could there have been, and how many could have been eaten to be left with 2? How many ways can you get an answer of 0 ? \square - \square $=0$ What is the rule?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

learn about the use of zero.				
Subtraction counting back - Children begin to work on the abstract when subtracting. - Children recognise not to include the starting number when subtracting.	$7-3=$ \qquad Key to model this process to the children of where to start when counting back. Use of number line to support understanding needed.	Eva is calculating 7-2 and does this by counting backwards on a number line. She gets an answer of 6 What mistake has she made? What should the answer be?	Game Race to zero! Start at 10 on a number line. Roll a dice and subtract this amount. The first person to land on 0 wins. What would you like to roll? Why? Why would you not want to roll a 1 ?	
Finding the difference as a form of subtraction	What's the difference between 10 and 6? The difference between 10 and 6 is __ $10-6=$	Annie says, The difference in number of spots on the lady birds is 7 Write a number sentence to show why Annie is correct.	Two numbers have a difference of 4 The larger number is less than 10 What could the two numbers be?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance				
Begin to compare number sentences - Children use <,> and = to compare number sentences.	Complete the number sentences. \qquad $+$ \qquad is equal to 7 \qquad +4 is less than 9 $5+$ \qquad is \qquad 2 Remind children that there could be multiple answers, however they need to ensure they follow the rule.	Ellen has made a mistake. Explain what she has done wrong. $3+5$ A. It is equal to 8 \square B. It is less than 8 \square C. It is >9 \square	Using the numbers $0-10$, how many different ways can you complete the boxes? $\begin{aligned} & _^{+} 7=\ldots \\ & \ldots^{+} \ldots>4 \\ & \ldots_{+}+<9 \end{aligned}$	
Add or subtract 1 or 2	Tom has these cakes. - Ann has 1 more cake than Tom. How many cakes does Ann have?	Tiny is adding 2 Is Tiny correct? How do you know?	Children to write their own number sentences/ problems to share with a friend to add or subtract 1 or 2 . Children to show this knowledge within their own play within different contexts.	
Year 1				
Number: Place Value (within 20)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Count numbers to 20.	Match the representations to the correct numeral. 12 7	Alex is matching some numbers.	Ella thinks of a number	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

len

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

- Understand 14,15 and 16. $-\quad$ Understand 17,18 and 19. $-\quad$ Understand 20.			The last number is less than twenty and more than fiffeen. What could the missing number be? Give your answer as a numeral and draw the representation to go with it.	
Tens and Ones	Use the part-whole model to complete the sentences. My number is \qquad One part is \qquad , the other part is \qquad The whole is \qquad	Alex makes a part-whole model. She says: Explain her mistake. What is her number?	How many ways can you complete the part-whole model to show numbers up to 20 , using the Base 10 equipment - you do not have to use it all.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Compare numbers

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 1				
Number: Addition and Subtraction (within 20)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Add by counting on	Use ten frames to complete the number story. First there were __ cars in the car park. Then __ more cars parked in the car park. Now there are __ cars in the car park. Mo starts at 9 and counts on $6 \quad 9+6=$ Show his calculation on the number line. \square $\begin{array}{llllllllllllllllllllll}\risingdotseq & 1 & \mid & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}>$	Use a number line to show who is correct.	Use the diagram and counters to tell your own number story for these calculations: $\begin{aligned} 0+12 & = & & \bigcirc \bigcirc O \\ 7+0 & = & & \bigcirc \bigcirc \\ 14+\ldots & =17 & & \end{aligned}$	What does part mean? What does whole mean? How many where there at the start? Which number represents the total? Number bonds, number line, add, more, plus, make, sum, total, altogether,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Add ones |
| :--- | :--- |
| using |
| number |
| bonds |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find and make number bonds.	What number bond is represented in the pictures? There are \qquad red counters. There are \qquad blue counters. Altogether there are __ counters. $__{+}+=$ \qquad \qquad $+\ldots=$ \qquad There are \qquad red counters. There are \qquad blue counters. Altogether there are __ counters. $\begin{aligned} & L_{+}^{+}= \\ & { }^{+}=- \end{aligned}$	(®) Jack represents a number bond to 20 in the part whole model. Can you spot his mistake?	Complete the number sentences using only two numbers.
Add by making 10	Mo has used a number line to calculate $6+8$ I partitioned 8 into 4 and 4 to make it easier. Use Mo's method to calculate: $5+8=$ \square $9+4=$ \square $6+8=$ \square	Dexter uses ten frames to calculate eight plus six. Do you agree? Explain why.	Choose a digit card to complete the number sentences below. You can use the digit card more than once.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Doubles

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Near doubles	What double is shown on the ten frame? Add one more red counter to the ten frame. What addition is shown now? Complete the sentence. \qquad \qquad is equal to double \qquad plus 1	Tiny uses doubles to work out $5+4$ What mistake has Tiny made? What is the correct answer?	Write $<$, > or = to complete the number sentences. double 6 $6+7$ double 9 $9+8$ $9+8$ double 8
Subtraction - not crossing 10	There are 16 biscuits on a plate. Mo eats 5 of them. Complete the sentences. First there were \qquad biscuits. Then \qquad were eaten. Now there are \qquad biscuits. $16-5=$ \qquad Use the number pieces and the number line to complete the number sentences. Use this method to calculate: $20-7=$ $\begin{aligned} & 20-8 \\ & 18-6 \\ & 19-4 \end{aligned}$	Rose has written a number sentence to describe the image below. Is she correct? Prove it. Children could use physical resources to prove their thinking.	How many ways can you complete this number sentence? Use the number line to help you.
Subtraction - crossing 10		True or False? $12-5=7$ Use the ten frames to prove your answer.	I'm thinking of a number. When I subtract 5 from the number, the answer is 7 . What is the number I am thinking of?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	There are 12 cars in the car park. 5 of them are blue. How many are red? \square - \square $=$ \square \qquad of the cars are red.	Amir has 16 apples. Ron has none. Amir gives Ron 9 apples. Who has the most apples now? Explain how you know.	Look at the following objects. Teddy works out these calculations. $\begin{aligned} 15-4 & = \\ 15-11 & = \\ 11-4 & = \end{aligned}$ What question could he have asked each time?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Missing number problems	First there were 12 birds in a tree. Then some of the birds flew away. Now there are 10 birds in the tree. How many birds flew away? $12-\quad=10$	Jo is working out the missing number. What mistake has Jo made? What is the missing number?	Tiny is thinking of a number. What number is Tiny thinking of? Can you make your own?

Year 1				
Number: Place Value (within 50)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Numbers to 50	Use the number track to - count forwards from 35 to 49 - count back from 46 to 38 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Can you count from \qquad to \qquad without a number track?	Ron and Whitney are counting. Ron says: Whitney writes: $1011121341 / 5$ Can you spot their mistakes?	Will is counting forwards from 37 to 46 using the digit cards below.	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, zero, count (on/up/to/from/down),

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Counting by
making groups
of $\mathbf{1 0}$ complete the sentences.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare objects within 50	If children are struggling to understand how to use the inequality symbols a visual may help them, for example, 位 II 四 Teddy and Eva each have some muffins. Who has more muffins? Which picture helps you to compare? \qquad is more than __ \qquad \qquad \qquad $>$ - \qquad has more muffins. Teddy 99999899999 -	Dexter compares two numbers. 30 is less than 33 Do you agree with Dexter? Explain your answer. Dexter is correct but he has used the wrong symbol.	Pick a card. Draw pictures in the boxes to make the comparison true. Children to be confident in using the language; more than, less than and equals to.
Compare numbers within 50	Use the number track to compare the two numbers using words and inequality symbols.	Kya is using a number track to compare numbers. $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 \\ \hline \end{array}$ She says, 39 is less than 42. Is she correct? Explain your answer.	Teddy is comparing two numbers. What could Teddy's number be? What can't it be?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Year 1

Number: Multiplication and Division							
Objective	Skill it	Apply it	Deepen it	Mathematical talk			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Are the groups equal or unequal? Write a label for each. \square \square	Explain your answer.	Children could then go on to showing it in another way. How many different ways can they show?	
Make arrays	002002 030208 There are \square pears in each column. There are \square columns.	Amir and Whitney are making arrays. Who has made a mistake? Explain why.	Eva begins to make an array with 40 counters. She has finished her first row and her first column. Complete her array. Write two different number sentences to describe the finished array.	

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Make doubles

- Numbers up to 20.
- Record doubling using the sentence double...... is
- Use repeated addition to represent doubles in an abstract concept.

Make equal groups - grouping

- Start with a given total and group amounts equally.

Take a number piece and double it. Complete the sentenc用 ${ }^{\text {Double —is - }}$ 囬 Double —is -

See children select the same numicon piece again to support learning here. Complete and continue the table.

Build	Represent	Add	Double
$0 \quad 0$:	$1+1=2$	Double 1 is 2
g ${ }^{\text {g }}$	$0 \cdot \square$	$2+2=-$	Double 2 is_-
	$\square \square$	$3+3=-$	Double 3 is _-
	$\square \square$	$-^{+}{ }^{=}-$	Double 4 is _-

Take 20 cubes. Complete the sentences. I can make \qquad equal groups of 2
I can make \qquad equal groups of 5
I can make \qquad equal groups of 10

Children should be exposed to questions with numbers that cannot be grouped equally.

James buys two jars of sweets.	Complete the table by doubling each number
Each jar has 7 sweets inside. How many sweets will I have I buy 2 jars? Explain your answer.	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	What patterns do you notice?
Frankie is grouping some flowers. She wants to make 3 equal groups of 5 . Does she have enough flowers to do this?	I am thinking of a number between 20 and 30
	I can only make equal groups of 5
	What must my number be?
	What happens when I try to make groups of 2 with it?
	What happens when I try to make groups of 10 with it?

Year 1				
Number: Fractions				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Recognise that fractions are part of a whole.	Explore the use of language around a fraction. Whole/ Equal parts.		Whole, equal parts, four equal parts, one half, two	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find a quarter

- Children
use shapes and objects to find quarters to begin with then move onto quantity
- Children
begin to recognise between
equal and
unequal parts.

Colour a quarter of each shape. Can you colour it in different ways?

Share each quantity into four equal groups.
There are __ cakes
There is _ cake in each quarter. A quarter of __ is __

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 1				
Number: Place Value (within 100)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Counting to 100 - Children introduced to 100 square. - Children use knowledge of counting to 50 to support. - Continue counting in 10s.	How many flowers are there altogether? Can you represent the flowers using ten frames and counters? Use the hundred square to - Count forwards from 80 to 92 - Count backwards from 73 to 65 Write down the numbers between 75 and 81 Find what number comes between 46 and 48	Teddy has made a number using the number shapes. He says	Correct the mistake in each sequence. - $34,35,36,38,39$ - $98,97,96,95,93$ - $78,79,18,81,82$	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, zero, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s),

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

onto ordering number using the knowledge of tens and ones.			
Ordering numbers - Children to start by ordering sets of objects and then moving onto quantities (largest to smallest and smallest to largest).	In groups of 4 roll some different equipment. The furthest roll wins. Give a high five to the person who came first, second, third and fourth. Order the numbers from smallest to largest. 57 8 21 100 93 72	How have these objects and numbers been ordered? 72 Explain how you know.	Mo creates a traffic jam using some toy cars on the carpet. The red car is $3^{\text {rd }}$ from the front. It is also the $2^{\text {nd }}$ from the back. Use some cars or manipulatives to find out how many cars are in the traffic jam.

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

I am going to find one more.

Has Dora shown the correct amount? Explain how you know.
Important for the children to be recognising the place value of 10 s and 1 s .

Can you move two of the counters so Rosie has 1 more than Alex and Whitney has 1 less than Alex?

Alex

Rosie

Whitney
Expectation of children to have tens frame in front of them to support their thinking.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance				
Year 1				
Geometry: Shape				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Recognise and name 3-D shapes - Cuboids (including cubs), cylinders, pyramids, cones, spheres. - Children can name shapes in different orientations. - Children begin to consider the 2D shapes they see on 3D faces.	Children build a model of their choice out of 3-D shapes. They then write sentences to say which 3-D shapes they used. Are there any they didn't use? Could they write a sentence about those? E.g. I used 3 cuboids. I did not use a sphere.	Put a selection of 3-D shapes in a feely bag. Choose a shape. What do you think it is? Explain how you know.	Use 3-D shapes to build a tower. Which shapes are the best for the bottom of the tower? Which shapes can only go on the top of the tower?	Group, sort, cube, cuboid, pyramid, sphere, cone, cylinder, circle, triangle, square, rectangle, shape, flat, curved, straight, round, corner (point, pointed), vertices, hollow, solid, face, side, edge, make, build, draw, direction, journey, left, right, up down, forwards, backwards, sideways, across, close, far, near,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Sort 3-D shapes

- Children able to sort 3-D according to simple properties e.g. size, colour, type.
- Sort based on, able to roll or stack.
Children are then encouraged to think about why they roll (curved face) or stack (flat face).

Children provided with physical shapes throughout sorting.

Explain how you know.

How else could the shapes be sorted?
along, through, to, from, towards, away from, movement, side, roll, turn, full turn, whole turn, half turn, stretch, bend. What makes a shape 3-D? What makes a shape 2D? Can we see any 3-D shapes in the classroom?
Can you describe this shape? What is the name of this shape?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Recognise and name 2D shapes - Children recognise that 2-D shapes are flat. - Children can name triangle, circle, rectangle, and square.	Children could use the faces of 3-D shapes as stencils or prints for 2-D shapes.	Part of a shape is hidden. What shape could it be? Is there more than one possibility? Explain your thinking.	Here is part of a shape. \square How many different ways can you complete the shape using one or more straight lines? Compare your shape with a partner. What is the same and what is different?
Sort 2-D shapes - Children sort and group 2D shapes according to simple properties, type, colour, size. - Children recognise orientation of a shape does	Go on a shape hunt around school. Take photos of 2-D shapes then sort them by their name. Can you sort them in another way? How are the shapes grouped? Label each group.	Tommy says that all shapes with 4 sides are squares. Is Tommy correct? Prove it. Children could draw a rectangle here to prove it or if they know of another shape.	Use a selection of triangles, rectangles, squares and circles. Put your shapes into groups. Ask a partner to label your groups. How many different groups can you create?

Year 1					
Objective	Skill it	Geometry: Position and direction	Mathematical talk		

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Describe turns - Children are able to practically turn objects, shapes and themselves in different directions using the language full, half, quarter and three quarter to describe turns.	Children given instructions to turn themselves or objects. E.g. make a half turn. Once confident, children could do this within their own pairs. Draw what each shape will look like once it has turned a: - quarter turn - half turn - three-quarter turn - full turn Children provided with the physical resource to do this.

| $\begin{array}{l}\text { Jennie was asked to turn the ruler one } \\ \text { half turn. }\end{array}$ | $\begin{array}{l}\text { Alex turns her number shape and it } \\ \text { finishes facing this direction. }\end{array}$ |
| :--- | :--- | finishes facing this direction.

Did she follow the instructions? Explain and correct any mistakes you find.

Over, under, underneath, above, below, top, bottom, side, on, in, outside, inside, around, in front, behind, front, back, below, after, beside, next to, opposite, apart, between, middle, edge, centre, corner, direction, journey, left, right, up, down, forwards, backwards, sideways, across,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

positions

- Children are able to use left, right, forwards and backwards to
describe.
- Children move on to using, top, in between, bottom, above, below.

Board games such as snakes and ladders or playing twister will support positional language.

Using the beebots. Setting the instructions the children plan for them to get to a chosen destination.

'Move the house 2 spaces backwards'. 'The house is to the right of the tree'. Think about where you are sitting in the classroom. What can you see around you? Complete the table

In front of m	Behind $m e$	To the lefft of $m e$	To the right of $m e$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measurement: Length and height				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Compare lengths and heights - Children use and understand the language of length. - Children recognise language will change depending on what type of length. - Children understand that height is a type of length.	Children could compare their own heights. From this they could use them stem sentence included in the example below to compare their own height to a friend. Use the words taller and shorter in the sentence stems to compare the height of the man and the boy. The man is \square than the boy. The boy is \square than the man.	May is comparing items at school.	Using classroom equipment, can you find an object which is longer than your rubber but shorter than your pencil? Can you find a friend who is shorter than you but taller than your other friend? Rosie, Alex and Mo are comparing the height of Mrs Rose and Jack.	Height, length, compare, measure, long, short, longer, shorter, narrow, wide, are we measuring the height or length of something? What would you use to measure the length of the classroom? What would you use to measure your shoe?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measure length

- Children able to use nonstandard units, such as cubes, hands or straws to measure length and height.
- Children recognise that these units have to be equal.

Year 1
Measurement: weight, mass and volume
Objective
Skill it
Apply it
Deepen it
Mathematical talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Introduce weight and mass - Heavier and lighter.	Children introduced to weight and mass by holding objects and describing them using the vocabulary such as heavy, light, heavier than, lighter than before using scales to then check. Children may believe that larger objects ae always heavier and this misconception should be explored. Choose two objects. Which is heavier? Which is lighter? Can you be a human weighing scale? Now use the weighing scale to check. Which object is heavier? Which object is lighter? The \qquad is heavier/lighter than the \qquad	I think the pencil is heavier than the book. Am I correct? Prove your answer.	I'm thinking of an object. It is heavier than a pencil, but lighter than a dictionary. What object could Jack be thinking of? Prove it. How many objects can you think of? Encourage children to be using the balance scales to check their thinking.	Full, half full, empty, holds, weight, weighs, balances, heavy, heavier, heaviest, light, lighter, lightest, scales, capacity, volume, mass Are larger objects always the heaviest objects? Let's see shall we. If a balance scale is down what does this tell us? If the balance scale is
Measure mass - Children are able to start using nonstandard units e.g. cubes to measure mass of an object.	Use the non-standard units to measure each item on your table. The \qquad weighs the same as \qquad cubes.		The grapes weigh 10 blocks and the kiwi weighs half the mass of the grapes.	up, what does this tell us? Look at my bottle, is it full? Is it empty?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

			Draw the blocks to balance the scale.	
Compare mass - Children are able to use nonstandard units to weigh objects to support comparing of two objects. - Able to use the language of \langle,$\rangle , =$	Can you order the objects from heaviest to lightest? $3 \text { pencils }=8 \text { pencils }=4 \text { pencils }$	Hettie wants the scales to balance. She thinks she could move some marbles to do this. Is she correct? Explain your answer.	Look at the balance scales below. Which statements are true? - The car is heavier than the van. - The van is heavier than the car. - The car is lighter than the van. - The van is lighter than the car. - The car and van weigh the same amount. Can you make a problem like this for your partner?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Introduce capacity and volume

- Empty and full

Children to practically explore capacity and volume by being provided with a

 range of containers using sand or water to explore capacity/volume.- Show me full containers
- Show me empty containers
- Show me almost full
- Show me almost empty.

Always, Sometimes, Never?
The tallest container holds the most liquid.

Identical containers can have a different capacity.

Show me.
Capacity $=$ the maximum amount the container can hold. Volume = how much liquid/sand there is. Amount of space it takes up.

When at forest school, children transfer water using the language of empty/ full. They explore how they are able to travel without spilling much water. I.e. they fill a container and discuss whether this is easy or hard compared to a half full container.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare volume | Put these in order from empty to full. |
| :--- |
| Show this question alongside cups that |
| represent the images. |

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare capacity - Children able to compare using nonstandard units of measure.	Take three different containers. Fill each container with liquid or rice using the same unit of measure e.g. a small cup. Order thee containers smallest to largest capacity. Children could do this in pairs and take it in turns to challenge their friend in ordering. They set the rule of largest smallest or smallest - largest.	Alex has a bottle of juice. She pours three glasses of juice. The bottle holds exactly three glasses of juice. Do you agree? Explain why.	Choose three containers. Investigate how you could compare the capacity of each one.

Year 1				
Measurement: Money				
Objective	Skill it	Apply it	Deepen it	Mathematical vocabulary
Recognising coins - Children able to recognise and know the value of different coins.	Organise the coins on your table into pence and pounds. Can you name each coin? (17	Dora says: Do you agree with Dora? Justify your answer.	Provide children with certain coins. 'make 17p in as many different ways as possible'.	Coins, notes, pounds, pennies, £, P, money, count, what is the value of each coin? How many 1 pound coins will you need to make 2 pounds?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

- Children able to use their knowledge of place value to match coin values.				
Recognising notes - Children able to recognise and know the value of different notes.	What is the value of each note?	Teddy is given one Christmas. Eva is given two Who is correct? Explain your reasoning.	Always, sometimes, never Money in notes is worth more than money in coins. Children investigate the statement using practical resources. May recognise they could have 6 pound coins which is more than a five pound note.	

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Counting coins - Children are able to combine their knowledge of counting and money to find amounts.	Use or draw coins to show the given amounts. - 10 p in $5 p$ coins. - 50 p in $5 p$ coins. - 50 p in 10 p coins. - 40 p in 5 p coins.	Alex thinks he was 30 pence in his wallet. Is he correct? Prove it.	Tommy's piggy bank is full of 2 pence pieces, 5 pence pieces and 10 pence pieces. Using one type of coin at a time, how can he make 30 p ?

Year 1					
Measurement: Time					
Objective	Skill it	Apply it	Deepen it	Mathematical vocabulary	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Before and after	Sort the activities into before and after school.		Draw pictures to show what could have	
- Children use vocabulary related to time (before and after) to describe, sort and order events.		The smallest case was on the shelf before the purple case. Is Effie correct? Explain how you know.	happened before and after.	week: Monday, Tuesday etc., seasons: spring, summer, autumn, winter, day, week, month, year, weekend, birthday, holiday, morning, afternoon, evening, night, midnight, bedtime, dinnertime, playtime, today,
Dates - Know days of the week. - Know there are 7 days in a week. - Children know months of the year.	Link this in with children's birthdays. What month is your birthday in? Fill in the missing days of the week and complete the sente - Today is Wednesday, yesterday was \qquad - Yesterday was Monday, today is \qquad - Today is Saturday, tomorrow is \qquad - Tomorrow is \qquad today is Wednesd c	Eva is practising chanting the months of the year. She says, Eva is incorrect. Correct her mistakes.	Find three different ways to complete the sentence below using the months of the year. \qquad is before \qquad but after \qquad .	yesterday, tomorrow, before, after, next, last, now, soon, early, late, quick, quicker, quickest, fast, faster, fastest, slow, lower, slowest, slowly, takes longer, takes less

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Time to the hour

- Children are introduced to telling the time to the hour using an analogue clock.
- Know the minute hand is the longer hand and the hour hand is the shorter hand.
- Know the language o'clock.
- Children can read time to the hour.
- Children know that when the minute handing is pointing upward to 12 it is an o'clock time.

Match the times to the clocks.

When it is 11 o'clock both hands point at 11

Alex
s Alex correct?
Explain your reasoning.

Children could play guess the time. 'I am thinking of the time. The short hand is on the 8 and the long hand is on the 12 . What time am I thinking of?'
time, hour, ' 0 clock, half past, clock, watch, hands, minutes, how long ago?, how long will it be to...?, how long will it take to...?, how often...?, always, never, often, sometimes, usually, once, twice etc., first second, next

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Time to the half hour - Children know that, at half past the hour, the minute hand has travelled half way around the clock and now points at the 6 and the hour hand is half way between the hours.		Can you spot Tommy's mistake?	Read the instructions and draw the hands on the clock. - The minute hand is pointing at the six. - The hour hand is half way between 10 and 11 What time is it?	
Writing time - Children explore the differences between seconds, minutes and hours.	Decide which activities should be measured in which unit of time. Let's count 20 seconds in our heads. Stand up when you get to 20 seconds. How close where you? Children given the opportunity to use stop watches or sand timers to measure time. E.g. how many star jumps can you do in 20 seconds?	Are the units of time chosen sensible for these activities? - A football match measured in seconds. - A lap around the school playground measured in minutes. - A birthday party measured in hours. Explain your answers.	Children provided with stop watches or sand timers to measure different activities they do with their friends.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

	Would you measure the duration of the activities in seconds, minutes or hours? Sort the activities into three groups: seconds, minutes and hours.		
Comparing time - Children ale to compare time using the language faster, slower, earlier and later.	Teddy, Mo and Whitney are running a race. Here are their times. Teddy is \qquad than Mo. \qquad Whitney is \qquad than Whitney than Mo. Can you write any more sentences to describe the race using the words slower and faster? Children have a running race together and their times written down. Who was the fastest? Children then recognise a smaller time means they were quicker.	When racing or timing something... make an error in the faster/ slower e.g. Child A got to me slower than Child B (even though Child A got to you first). Am I correct? Explain your answer.	Work in small groups. Complete the following activities and record how long it takes each person. - Build a tower of ten bricks. - Run a lap of the playground. - Write your name five times. Write three sentences about each activity using the words slower and faster.

Year 2				
Number: Place Value				
Objective	Skill it	Apply it	Deepen it	Mathematical talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count objects to 100 - Children able to estimate the number of objects before counting. - Children can do this by making tens.	Count and write the number of cars in the car park. There are \qquad cars in the car park.	Jack says he has 61 Is he correct? Explain your reasoning.	Each jar contains 10 cookies. How many cookies are there altogether? Write your answer in numerals and words. What strategy did you use? Did your partner use a different method? What is the best strategy to use?	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, zero, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Estimate numbers - Including on a number line.	Label the number line Estimate where each number belongs on the number line. 45 \square 75 35	Kim draws an arrow on a number line to show a number. What could Kim's number be? What can Kim's number not be? What numbers must Kim's number be between? Explain your reasoning.		numeral, figure(s), compare, (in) order/ a different order, size, value, between, halfway between, above, below. Numbers to one hundred, hundreds, partition, recombine, hundred more/less, estimate, how do we say this number? What numbers complete the part-whole? How many tens are there? How many ones are there? Do groups of ten help

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Tens and ones
with a part-whole
model

Tens and ones
using addition
Children to
see
partition of
numbers in
different
ways.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect，Motivation，Cooperation，Kindness，Pride，Perseverance

Partition numbers to 100	Complete the part－whole models to match the base 10 晅晅晅香晅	What mistake has Tiny made？	－Ask children to use some equipment from this block to make numbers to 100 Ask children to partition their number into tens and ones using a part－whole model． They should be able to complete the part－whole model in different ways．For example，here are some ways they could partition 42
Write numbers to 100 in words	Complete the table．	Kim is counting． Explain the mistake that Kim has made．	2．Consolidate learning from this block by making numbers in a variety of different ways． Ask children to partition their numbers and then use the partitions to help them write the numbers in words． Encourage children to work through a series of consecutive numbers，for example 72，73，74，and discuss with a partner any patterns that they notice．

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Flexibly partition numbers to 100		What mistake has been made?	Complete the part-whole models to partition 41 in four different ways. What patterns can you see? Can you make your own example for a friend to spot your pattern?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Write numbers to 100 in expanded form	Complete the number sentences to partition each number. You can use a part-whole model to help you. $68=6$ tens + \qquad ones $68=60+$ \qquad	Forty-seven is equal to thirty plus seventeen. Do you agree with Tiny? Talk about it with a partner. Can you prove this using base 10 ?	Complete the number sentences. $\begin{aligned} & 54=50+\square \\ & 54=40+\square \\ & 54=\square+24 \end{aligned}$ Continue the pattern. What do you notice?
Compare objects	Use <, > or = to complete.	Rosie and Amir are comparing numbers they have made. Is Rosie correct? Explain your answer.	Add more Base 10 to make the number shapes and the Base 10 equal. How much did you add in total to make them equal? What is the smallest amount you could add if the symbol changed to <?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare numbers - Able to use the language less than, greater than and equals to.	Complete the statements using more than, less than or equ 42 is \qquad 46 81 is \qquad $60+4$ $30+8$ is \qquad thirty-eight	Do you agree? Give some examples to support your answer.	How many different numbers can go in the box? Can you prove your answer using concrete resources?	
Order objects and numbers - Able to order greatest to smallest, smallest to greatest.	Circle the numbers 48,43 and 50 on the number line. Put the numbers 48,43 and 50 in order starting with the smallest. Children provided with a range of opportunities to order objects and numbers.	Which of these numbers cannot be used to complete the statement? A) eighty and two B) eighty-four C) seven ones and eight tens eighty-three < \square Convince me.	Order the numbers below. Which would be the fourth number? $3353 \quad 37$ Explain how you ordered them.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Fill in the blanks of the number

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Number: Addition and subtraction				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Fact families addition and subtraction bond to 20	Using concrete apparatus, can you talk about the relationship between the different flowers? One relationship shown by this part-whole model is $15+5=20$ Can you write all associated number sentences in the fact family?		Here is an incomplete bar model. The total is greater than 10 but less than 20 What could the missing numbers be? How many different combinations can you find?	What does part mean? What does whole mean? How many where there at the start? Which number represents the total? How many
Check calculations	Can you use inverse operations to check $5+12=17 ?$	Eva did the following calculation: $12-8=4$ She checked it by using the inverse. She did 12+8=20 and said that her firs calculation was wrong. What advice would you give her?	Rewrite the following to make it a subtraction word problem. I have eleven sticks in a pile. I add six more sticks to the pile. Now I have seventeen sticks all together.	different number sentences are there in a fact family? What patterns can you see? Why do we check our calculations? Number bonds, number line, add, more, plus, make,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare number sentences	Fill in the circles with either $<,>$ or $=$ $\begin{aligned} & 6+4 \\ & 6+4 \\ & 11-4 \\ & 11-4 \\ & 3+6 \\ & 3+5 \\ & 12-5 \\ & 12-4 \end{aligned}$	Rosie thinks she knows the missing number without calculating the answer. Can you explain how this could be possible?	Both missing numbers are less than 10 $7+\square<7+\square$ How many different possible answers can you find?	sum, total, altogether, inverse, double, near double, half, halve, equals, is the same as (including equals sign), difference between, how many more to, how much more is...?, subtract, take away, minus, how many fewer
Related facts	Complete the part-whole models below:	Alex says, If I know $9+1=10$, I can work out $90+$ $\ldots=100$ Find the missing number and explain how Alex knows.	Continue the pattern. $\begin{aligned} & 90=100-10 \\ & 80=100-20 \\ & 70=100-30 \end{aligned}$ What are the similarities and difference between this pattern and the following one? $\begin{aligned} & 9=10-1 \\ & 8=10-2 \\ & 7=10-3 \end{aligned}$	is... than...? How much less is...? Predicting, find, find all, find different, investigate, calculations, fact families, compare, commutative,

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Subtract a 1 digit number from a 2 digit number crossing 10	$22-7=$ Can you put the larger number in your head and count back the smaller number? Start at 22 and count back7	Mo is counting back to solve $35-7$ He counts $35,34,33,32,31,30,29$ Is Mo correct? Explain your answer.	Use the number card to create 3 subtractions. 43 five 46 six 47 nine
Add two 2 digit numbers not crossing ten. Add ones and add tens.	Find the sum of 34 and 23	Amir has been asked to complete the bar model. Explain to Amir what he has done wrong. How could you help him work out the correct total?	What digits could go in the boxes? $\square 2+\square 5=87$
Add two 2 digit numbers crossing ten - add ones and add tens.		Chloe says;	Can you create a calculation where there will be an exchange in the ones and your answer will have two ones and be less than 100?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Add three 1 digit numbers.		Always, Sometimes, Never $\text { odd }+ \text { odd }+ \text { odd }=\text { odd }$ Use one-digit numbers to test if this is true e.g. $3+5+7$	Which numbers would you add together first in the following number sentences? Why would you add those first? $\begin{gathered} 3+5+7= \\ 8+2+6= \\ 4+3+4= \end{gathered}$ Is there always an easier order to add three one-digit numbers?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Mixed addition and subtraction	A jumper costs $£ 25$ AT-shirt costs $£ 17$ less than the jumper. How much does the T -shirt cost? Mr Trent buys a jumper and a T -shirt. How much does he spend?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Number: Multiplication and Division				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Recognise equal groups	Complete the stem sentences.	Spot the mistake. Alex says, "There are 10 equal groups with 2 in each group. There are ten 2 s ."	Sort into equal and unequal groups. Create your own picture to go in each column.	Odd, even, count in twos, threes, fives, count in tens (forwards from/ backwards from), how many times, lots of, groups, once, twice, three ties,
Make equal groups	What else do we need to show 'five 3s'? The Base 10 shows six equal groups with ten in each group. There are six tens. How else can you represent these as equal groups?	Which example does not show 7 groups of 1 ? Provide children with a range of groups to choose from. Encourage the children to explain why they ARE NOT examples.	How can you make the groups equal?	five times, multiple of, multiply, multiply by, repeated addition, array, row, column, double, halve, share, share equally, group in pairs, threes etc., equal groups of, divide, divided by, left, left over, describe the rule,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance				
Add equal groups	Complete: There are \qquad equal groups with \qquad in each group. There are three s. \qquad \qquad $=12$	True or False? $5+5=2+2+2+2+2$ Draw an image or use cubes to help you explain your answer.	Which one does not belong? Two 5s Ten $5+5$ What do we need to change to make them all represent the same?	equal, unequal, why are we using the addition symbol? Multiplication, lots of, arrays, commutative, times tables, how many do you have to begin with? Division
Multiplication sentences using ' x ' symbol	Complete the sentences to describe the equal groups. There are \qquad equal groups with \qquad in each group. There are three \qquad -	$3+3+3=3 \times 3$ Is Mo correct? Explain why. Draw an image to help you.	Think of a multiplication to complete: $6+6+6>_\times \ldots$ The total is 18 , what could the addition and multiplication be?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

2 times table

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

10 times table	How many crayons are there altogether? $\frac{\text { MP }}{1}$ the mh m There are \qquad crayons altogether. \qquad $\times 10=$ \qquad	On sports day, Jack runs 10 metres, 7 times. Which of these calculations do not describe this word problem? $\begin{gathered} 10+7 \\ 7 \times 10 \\ 7+7+7+7+7+7+7+7+7+7 \\ 10+10+10+10+10+10+10 \end{gathered}$ Explain why.	Match the calculations to the correct answers. Write two multiplications to match the odd one out.
Make equal groups sharing	Share the 12 cubes equally into the two boxes. There are \qquad cubes altogether. There are \qquad boxes. There are \qquad cubes in each box. Can you share the 12 cubes equally into 3 boxes?	Alex has 20 sweets and shares them between 5 friends. Tommy has 20 sweets and shares them between 10 friends. Whose friends will receive the most sweets? How do you know? Children to draw out to support their explanation.	Miss. Blythe has 24 chairs. When she stacks them equally, there are none left over. How many towers can she stack the chairs into so that every tower ha the same amount? Find 3 different amounts of towers.

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Make equal groups grouping	Mrs Green has 18 sweets. She puts 3 sweets in each bag How many bags can she fill? 18 3 \square	6b. Ella and Wes have 36 counters. 000000000 ```36 in equal groups of 6 makes 7 groups. \\ Ella``` 36 in equal groups of 4 makes 9 groups.	You have 30 counters. How many different ways can you put them into equal groups? Write down all the possible ways.
Divide by 2	Complete the stem sentences. $\begin{array}{ll} \text { I have _ cubes altogether. } & \square \div \square= \\ \text { There are _i each group. } & \square \times \square= \\ \text { There are _- groups. } & \square \times \square= \end{array}$	Lia has 22 pieces of chocolate. She gives half of them to Joe. Is Lia correct? Explain why.	I have 24p. I divide it equally between 2 friends. How much will they get each? I have 24 p in 2 p coins. How many 2 p coins do I have? Consider the two questions above. What is the same and what is different?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Divide by 5	40 pencils are shared between 5 children. \square \div \square $=$ \square How many pencils does each child get?	4b. 55 crayons are shared equally between 5 people. Who is correct? Explain why using a division picture to prove it.	Use the number cards to make multiplication and division sentences. How many can you make? 2 20 5 10 4
Divide by 10	I have 70 p in my pocket made up of 10 p coins. How many coins do I have? Draw a picture to prove your answer.	Cakes are sold in boxes of 10 Jack and Alex are trying to pack these cakes into boxes. Who is correct? Explain how you know.	Mrs Owen has some sweets. She shares them equally between 10 tables. How many sweets could each table have? Find as many ways as you can. What do you notice about your answers?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Number: Fractions				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Make equal parts	Look at the representations. Decide which show equal parts and which show unequal parts. Can you make some of your own representations of equal and unequal parts?	Three children are splitting a square into equal parts. Teddy Alex Mo Who has split the square into equal parts? Explain why. Children could explain this by physically making the shapes with the parts.	How many different ways can you put these beanbags into equal groups?	Whole, equal parts, four equal parts, one half, two halves, a quarter, two quarters, fraction, three quarters, one third, a third, equivalence, equivalent, unequal, are the parts equal? How do you know? Splitting a whole into two equal parts, $\frac{1}{2}, \frac{1}{3}$, what does the 1 represent, what does the 3 represent. How many thirds make

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Recognise |
| :--- | :--- | :--- | :--- | :--- | :--- |
| a half |\quad The whole gummy bear is split into___equal parts.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find a half	Share 20 beanbags equally between two containers, then complete the stem sentences. The whole is \qquad Half of \qquad is \qquad Fill in the blanks. Use counters to help you if needed. $\frac{1}{2} \text { of } 4=$ \square $\frac{1}{2} \text { of } 40=$ \square	Dora is asked to shade half of her shape. This is what she shades. Is she correct? Explain why.	I am thinking of a number. Half of my number is more than 10 but less than 15. What could my number be?
Recognise a third	Three friends are sharing a pizza. The pizza is split into \qquad equal parts. Each part is worth a \qquad -. This is the same as \square	Dora says, I have one third of a pizza because I have one slice and there are three slices left. Do you agree? Explain your reasoning.	Leave $\frac{1}{3}$ of each shape unshaded. Find four different ways.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find a third	Use the cubes to make three equal groups. There are \qquad cubes altogether. One third of \qquad is \qquad of \qquad is \qquad	Annabel has made 21 cupcakes and wants to share them equally with 3 friends. She says, Each friend will get 8 cupcakes because 8 is $\frac{1}{3}$ of 21 .	Ron is thinking of a number. One third of his number is greater than 8 but smaller than 12 . What could his number be?
Unit fractions	Recognise one equal part of a whole. What is the same and what is different about each bar model? Match the unit fraction to the correct picture. $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{2}$	Hugo is finding one third of the objects below. $\frac{1}{3}$ of the boxes is 2 boxes. Is Hugo correct? Prove it. When proving - children to raw to support their answer.	I am thinking of a number. One third of my number is 12 Which will be greater, one half of my number or one quarter of my number? Use cubes or a bar model to prove your answer.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Equivalence of $\frac{1}{2}$ and $\frac{2}{4}$	Children to learn this practically to explore they are the same. What does equivalent mean? Using two identical strips of paper, explore what happens when you fold the strips into two equal pieces and four equal pieces. Compare one of the two equal pieces with two of the four equal pieces. What do you notice?	Whitney says: I have shaded a third of my shape. Do you agree? Explain why. Why do you think Whitney thinks this?	Using red and blue cubes, build two towers to convince me that $\frac{1}{2}$ and $\frac{2}{4}$ are equal.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Recognise
a quarter

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Find a |
| :--- | :--- |
| quarter |

We're Reaching for the Stars

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Measurement: Money				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Count money Pence	Count the money. (3) (3) (3) (3) (3) (3) (3) $=-\mathrm{p}$	Which is the odd one out? c. 50p Explain your answer.	Jack selects four of these coins. He can use the coins more than once. What total could he make? What is the lowest total? What is the greatest total?	Coins, notes, pounds, pennies, £, P, money, count, pence, do the notes have greater value than coins? How do you know you have made amount? Greater than, less than, compare

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Make the same amount	Match the amounts.(0) (3) (3) (3) (3) (3) (3) (3) (3)	Emma has the money below, She says, I can make the same amount using 11 coins. Is she correct? Convince me.	How many ways can you make $10 p$ using only copper coins? Did you use a strategy? Make 50 p three ways using the coins below. You can use the coins more than once.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find the total (+)	Complete the table.		
	Pounds	Pence	Total
	£4	25p	£__ and __- p
	£2		£2 and 40 p
		65 p	$£ 20$ and 65 pence
			£15 and 20 p
		55 pence	

Olga is buying balloons for
her party.

red	blue	yellow
5 pounds		$32 p$

 82p in total.

Is she correct? Explain how you know.

Dexter has these coins and notes.

He makes an amount greater than $£ 20$ but less than £30

Draw the money he could have used. You can use each coin or note more than once.

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find change	Dora has these coins. She spends 53 p. What money will she have left? What coins could it be?	Pippa has 70p. She buys some cupcakes that costs 47p. Is Pippa correct? Explain your answer.	I have 20 p . My change is more than $5 p$ but less than 10 p . What could I have bought? Find as many ways.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Two step |
| :--- | :--- |
| problems |
| with money |\quad| Ros |
| :--- |
| Fill |
| |
| |
| |
| |
| |

Rosie has $£ 33$ in her money bank, and gets $£ 40$ more. Fill in the bar model and write a calculation to show her total.

Ghost Train: 90 p

Annie finds a 20 p coin.

She puts it with her other three 20p coins.

Does Annie have enough to ride the ghost train?

Explain why.

Hussain has one £20 note, three $£ 1$ coins and one $£ 2$ coin.

A robot is $£ 10$.

How many robots can he buy?
How much change will he get?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Measurement: Length and Height				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Measure lengths (cm)	Choose a variety of objects and practice measuring them using a centimetre ruler. Remember to line up the object to the 0 mark on the ruler. e.g. How long is the pencil to the nearest centimetre? $\|\mid$ $\begin{array}{lllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$	Mo has used the ruler to measure the length of the car. Mo says the car is 8 centimetres long. Do you agree? Explain your answer.	Franks teddy measures between 5 cm and 15 cm . What are the possible measurements his teddy could be? What could the possible measurements be if it is an odd number?	Height, length, compare, measure, long, short, longer, taller, shorter, narrow, wide, centimetre, metre, kilometre, nearest cm , measuring from 0 , how long is? How tall is? Orientation, when would we

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order lengths	Eva, Jack and Rosie are comparing the length of ribbons. Complete the sentences. \qquad has the longest ribbon. \qquad has the shortest ribbon. \qquad 's ribbon is shorter than \qquad 's. \qquad 's ribbon is longer than \qquad	Dora says, The taller you are, the longer your shoes are. Measure the height of people in your class and measure the length of their shoes. Is Dora correct?	Four children are measuring their heights. Eva is taller than Rosie, but not as tall as Mo. Dexter is taller than Mo. Write down their names in order of their heights, starting with the shortest.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Compare |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| heights |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order heights	The height of three buildings is shown. - Which building is the tallest? - Which building is the shortest? - Put the buildings in order, from tallest to shortest.	An oak tree is 20 m tall. An elm tree is 15 m tall. A pine tree is taller than an elm tree, but shorter than an oak tree. How tall could the pine tree be? Explain how you got to that answer.	Four children are measuring their heights. Fay is taller than Ann, but not as tall as Dan. Tom is taller than Dan. Write the children's names in order of their heights. Start with the shortest child.
Four operations with length	Teddy has a toy train and a toy plane. The train is 28 cm long. The plane is 16 cm longer. How long is the plane? The toy train is double the length of a toy car. How long is the toy car? Draw bar models to help you.	Is Joe correct? Explain why. I have a piece of string that is 40 cm long. Ava's string is 5 times shorter than mine. Together our pieces of string are 48 cm long.	There are 3 teddies in a box. The brown teddy is 15 cm taller than the yellow teddy. The yellow teddy is 3 cm shorter than the pink teddy. The pink teddy is 42 cm tall. How tall are the brown and yellow teddies? How much taller is the brown teddy than the pink teddy?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2						
Measurement: Time						
Objective	Skill it			Apply it	Deepen it	Mathematical talk
'O' clock and half past	Match the events to the approximate times they happen. Can you show the time on your clock?	$9{ }^{\circ}$ 'clock Half past 10 $12{ }^{\circ} \mathrm{c}$ clock Half past 3	Lunchime Got oschool Home time Playime	It is half past 11 so the hour hand should be on the 11 Is Alex correct? Explain your reasoning.	Oh no! The minute hand has fallen off the classroom clock! Lunchtime is at 12:00 Have the children missed their lunchtime?	Quarter past/to, Time, days of the week: Monday, Tuesday etc., seasons: spring, summer, autumn, winter, day, week, month, year, weekend, birthday, holiday, morning, afternoon,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Quarter
past and
quarter to

We're Reaching for the Stars

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2

Measurement: Mass, Capacity and temperature.

Objective	Skill it	Apply it	Deepen it	Mathematical talk
Compare mass	Using the words 'more' and 'less' and the > or < symbols, describe the mass. The lettuce weighs than the pineapple. Investigation using a range of objects encouraging the language of less than and more than with the use of scales to support.		Always, sometimes or never true? The larger the box, the heavier it is. Investigation project for children to complete.	Full, half full, empty, holds, weight, weighs, balances, heavy, heavier, heaviest, light, lighter, lightest, scales, capacity, volume, mass, temperature, centigrade, thermometer, degrees, grams, kilograms, volume, millilitre,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measure mass in grams	Use gram weights to measure the mass of objects using a balance scale. The___ weighs ___ grams.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Four |
| :--- | :--- | :--- | :--- | :--- |
| operations |
| with mass |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare volume and capacity	Complete the sentences: The bottle can fill \qquad mugs. The pot can fill \qquad mugs. DDO Use other containers to investigate how many mugs of rice they take to fill.	Whitney had two full bottles of juice. She poured some juice into two glasses. Which glass has the most juice in? Which has the least juice in? Explain how you know.	Choose a selection of different sized containers. Decide how you will measure how much liquid each container can hold. Order your containers from smallest to largest. Compare the containers using $<$, > or $=$
Millilitres	Draw the level on the scale to show the capacity of each container. The container's capacity is __ml	Estimate the amount of water in the container. Explain why you have given your answer.	7b. Megan and Amit are measuring liquids. Megan spilt hers on the floor. She knows she has 15 ml less than Amit. How much has she spilt?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Litres	Provide a variety of different containers with litres clearly labelled e.g. cola bottle, paint bottle, milk etc. Introduce litres and discuss how these are the same but different to millilitres. Identify how many litres fill each container. Show how much liquid is in each cylinder after you: - Pour 3 litres of water into the cylinder. - Leave 1 litre of cola in the bottle. - Pour half of the juice into the cylinder.	Mo puts 4 litres of water in bucket A . He then pours 3 litres from bucket A into bucket B. Which sentence is correct? - There is more in bucket A . - There is less in bucket A. - There are equal amounts in each bucket. Explain why.	3 bowls each have more than 201 of water in but less than 50 I The green bowl has 51 more than the red bowl. The blue bowl has 101 more than the green bowl. How much could each bowl have in?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Four
operations
with volume
and capacity

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Temperature

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Count sides |
| :--- | :--- | :--- | :--- | :--- | :--- |
| of 2d |
| shapes |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count vertices in 2d shapes	Complete the table.			Jai wants to collect a total of 11 vertices. He says, Is he correct? Explain how you know.	Jack has created a pattern using shapes. 1 2 3 How many vertices does each step in the pattern have? What do you notice? Can you predict how many vertices the next step in the pattern will have? Is there more than one way to continue the pattern? Can you create your own pattern and explore how the vertices change?	symmetrical, right angle, 2d, 3d, dimensional, flat, what is the difference between 2d and 3d shapes? Regular and irregular shapes, show me a vertex, vertical, horizontal, how have these shapes been sorted? repeating pattern
	Name	Shape	Number of vertices			
	Pentagon	\square				
	Rectangle	\square				
	Square	\square				
	Triangle	\triangle				
	Hexagon	\square				

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Use lines of
 symmetry
 to complete
 shapes |
| :--- | :--- |
| Each diagram shows half a shape and the line of symmetry. |
| complete the shapes. |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count
vertices on
3d shapes

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Make patterns with 3d shapes	Use some different coloured cubes to make a repeating pattern. Can you describe the pattern to your partner? Using colours? Using letters? Using sounds?	Name the hidden shapes under the splats.	What is the same about these patterns? What is different about these patterns?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Geometry: Position and direction				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Describe movement	Use cones to create a route for a partner. Describe the route the partner takes using position and directional language. Complete the sentences using 'left' and 'right' to describe the position of the coins. The $£ 1$ coin is to the \qquad of the 1 p coin. The 50p coin is to the of the 1 p coin.	The pink doughnuts are on the left. Mo The pink doughnuts are on the right. Who is correct? Explain how you know.	Use the clues to colour the shapes. - The circle in the middle is blue. - The circle on the right is red. - The shape up from the right circle is green. - The shape down from the circles is green. - The square to the left of the green triangle is red. - The four-sided shape up from the rectangle is blue. - The triangle on the left is red.	Over, under, underneath, above, below, top, bottom, side, on, in, outside, inside, around, in front, behind, front, back, below, after, beside, next to, opposite, apart, between, middle, edge, centre, corner, direction,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Describe turns	Turn a figure. Ask a partner to describe the turn using the language, 'full turn', 'half turn', 'three-quarter turn', 'clockwise' and 'anticlockwise'.	Could there be more than one answer? Why? Always, Sometimes, Never. If two objects turn in different directions they will not be facing the same way. Support this question with the use of physical resources.	Look at the number shape below How could the number shape ha turned? Describe all possibilities.	journey, left, right, up, down, forwards, backwards, sideways, across, close, far, near, along, through, to, from, towards, away from, movement, side, roll, turn, whole/ full turn, half turn, three-quarter turn, quarter turn, stretch, bend, rotation, clockwise, anticlockwise, straight line,
Describe movement and turns together COMPUTIN G could be used within this objective.	Describe the route taken. Draw a line to show the route taken. Write directions for the route taken.	Is Whitney correct? Convince me.	Are there any other routes that could be taken?	ninety degree turn, what direction was the turn,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 2				
Statistics (can link across curriculum e.g. COMPUTING/Topic/P.E)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Interpret and construct simple pictograms.	Children to use counters to support this learning and build pictograms using concrete resources as a foundation. Use the tally chart to help you complete the pictogram. Key \qquad Data collection in science e.g. favourite animal in class 2 data collection.	Here is a pictogram showing the number of counters each child has. How could you improve the pictogram?	Use the clues below to help you complete the pictogram. - More Caramel was sold than Bubblegum flavour, but less than Strawberry flavour. - Mint was the most popular flavour. - Vanilla was the least popular. Can you find more than one way to complete the pictogram?	Chart, bar chart, table, axis, block diagrams, tally chart, quantity, diagram, pictograms, one to one correspondence, what will each symbol be worth? What will each block be worth?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We＇re Reaching for the Stars

Respect，Motivation，Cooperation，Kindness，Pride，Perseverance

Interpret and construct simple tally charts．	Complete the tally chart．			Dexter makes a tally chart of the animals he saw at the zoo			
	Favourite Colour	Tally	Total				
	Bue	HI III					
	Red	H业怆II		\square	Class 1 and Class 2 were each asked their favourite ice－cream flavours．Their results are shown in the tally charts． Class 1		
	Yellow	II		（90）	Flavour	Total	
	What does the data tell you？Tell me the story．			9	Vanilla	HH HH HH	
				＊\＃\＃	Chocolate	HH HH HH HH	
				Tick one box below that shows all of the	Strawberry	洮 II	
				Tick one box below that shows all of the animals Dexter saw and explain why the others are incorrect	Mint		
						Class 2	
				\％\％幺幺\％\％幺幺\％幺幺幺\％	Flavour	Total	
					Vanilla	HI H H II	
				－	Chocolate	HH H H HH HH	
					Strawberry	H	
					Mint		
					What is the	same？What is different？	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 3				
Number: Place Value				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Represent numbers to 100	Dora has used lines and dots to draw the number 43 Use lines and dots to draw each number. 26 52 74	Which picture does not show 23 ? 08686	Here are three digit cards. 7 0 2 List the 2-digit numbers that can be made using these digit cards. What is the greatest 2-digit number you can make? What is the smallest 2-digit number you can make? Why can the zero not be used for the number of tens?	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, zero, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s), compare, (in) order/ a different order, size, value, between, halfway between,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Represent numbers to 1000	Use base 10 to represent $701325 \quad 879$ Write down the number represented with Base 10 in each case.	Which child has made the number 315 ? Explain how you know.	Teddy has used Base 10 to represent the number 420. He has covered some of them up. Work out the amount he has covered up. How many different ways can you make the missing amount using Base 10?	what is the value of each interval on the number line? How many hundreds are there? 10 more, 10 less, 100 more, 100 less, compare, what strategies did you use to compare the numbers?, order, ascending, descending, how do you know when you have created the

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Partition numbers to 1000	Complete the part-whole models.	Tiny is completing a part-whole model. Explain the mistake that Tiny has made. What is the whole?	Use the digit cards to make a 3-digit number. Partition your number into hundreds, tens and ones. Compare answers with a partner. How many numbers can you find?	8	smallest/greatest number?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Flexible partitioning of numbers to 1000	Here is the number 417 partitioned in three different ways. Draw a part-whole model and complete the number sentence for each. $417=\ldots \ldots ـ^{+}+\ldots$ \square $417=\ldots+\ldots+\ldots$ $417=$ \qquad $+$ \qquad $+$ \qquad	Partition 367 in five different ways. Compare answers with a partner. What is the same? What is different?	Tiny is thinking of a number. Complete the number sentence to partition Tiny's number in a different way. \qquad How many ways can you find?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Number line to $\mathbf{1 , 0 0 0}$	Share number lines with or without start/end numbers. Draw an arrow to show the number 800 Draw an arrow to show the number 560 Where appropriate, use estimation to decide where a value could be on a number line.	Estimate where seven hundred and twenty-five will go on each of the number lines. Explain why it is not in the same place on each number line.	If the arrow is pointing to 780 , what could the start and end numbers be? Find three different ways and explain your reasoning.
Estimate on a number line to 1000	Estimate the numbers that the arrows are pointing to.	Huan and Aisha have estimated where 130 belongs on the same number line. Can Huan and Aisha both be correct? Explain your answer.	Here is a number line from 0 to 1,000 Estimate where the numbers belong on the number line. 500 20 670 Compare answers with a partner. Which number was the easiest to estimate?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Add a 3 digit number and a 1 digit number crossing 10	We can use a number line to calculate $346+7$ $\begin{aligned} 46+4 & =50 \quad 50+3=53 \\ \text { so } 346+7 & =353 \end{aligned}$ Use this method to calculate: $564+8$ $716+9$ $327+5$	Which questions are harder to calculate? $\begin{aligned} & 234+3= \\ & 506+8= \\ & 455+7= \\ & 521+6= \end{aligned}$ Explain your answer.	Always, Sometimes, Never When 7 and 5 are added together in the ones column, the digit in the ones column of the answer will always be 2 What other digits would always give a 2 in the ones column? Prove it.	would you use and why? Near numbers, estimate, reasonable, inverse
Subtract a 1 digit number from a 3 digit number - crossing 10	Teddy uses Base 10 to calculate 321 - 4 Use this method to calculate: $322-4 \quad 322-7$ 435-7	Explain how you would solve these calculations: $\begin{aligned} & 564-_=558 \\ & --8=725 \\ & 352=361- \end{aligned}$	7b. Use four of these digit cards to write a subtraction sentence that gives an answer between 690 and 700. 8 5 0 7 4 Find two possibilities.	
Add 3 digit number and 2 digit number not crossing 100	$\begin{array}{cccc} \hline \text { Complete using }<,>\text { or }= \\ 773+1 & \bigcirc & 773+10 \\ 653+10 & \bigcirc & 653-10 \\ 647+10 & \bigcirc & 657-10 \\ 721+10 & \bigcirc & 653+10 \end{array}$	When I calculated 392 subtract 20 I used my known fact that $9-2=7$ Explain Rosie's method.	Write one calculation that could complete all of the statements. $\begin{aligned} 456-10 & <\square \\ 466+1 & >\square \\ 466+0 & =\square \end{aligned}$ Is there more than one way?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Miss calculation when counting on.
 Place value error.
 Children to spot this mistake and explain the mistake that has taken place.

Use the digit cards to complete the calculation.

7789

The digits in the shaded boxes are odd.
Is there more than one answer?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Make decisions	A machine packs 86 boxes on Saturday. Another 57 boxes are packed on Sunday. How many boxes are packed altogether? Draw a bar model to match the problem.	Eva, Ale ond Amir wont to find the isisance form Halifox to leeds. Explain why they are incorrect.	Use the cards to create additions and subtractions that give an answer between 200 and 300

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 3				
Number: Multiplication and Division				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Multiplication - equal groups	Describe the equal groups. 30093003000 equal roups of odbobo \qquad \qquad Mramemomem \qquad equal groups of \qquad	Which row of money is the odd one out? Explain why.	8b. Sort the contents of the cooler into equal groups. Find three ways.	Odd, even, count in twos, threes, fives, fours, eights count in tens (forwards from/ backwards from), how many times, lots of, groups, once, twice, three ties, five times, multiple of, multiply, multiply by, repeated addition, array, row, column, double, halve, share, share
Use arrays				equally, group in
Multiples of 2				pairs, threes etc.,
Multiples of 5 and 10				divide, divided by,
Sharing and grouping				describe the rule,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply by 3	There are five towers with 3 cubes in each tower. How many cubes are there altogether?	If $5 \times 3=15$, which number sentences would find the answer to 6×3 ? - $5 \times 3+6$ - $5 \times 3+3$ - $15+3$ - $15+6$ - 3×6 Explain how you know.	There are 8 children. Each child has 3 sweets. How many sweets altogether? Use concrete or pictorial representations to show this problem. Write another repeated addition and multiplication problem and ask a friend to represent it.	equal, unequal, why are we using the addition symbol? Multiplication, lots of, arrays, commutative, times tables, how many do you have to begin with? Division, what is the same/different about the groups?
Divide by 3	Circle the counters in groups of 3 and complete the division.	Jack has 18 seeds. He plants 3 seeds in each pot. Which bar model matches the problem? A18 6 6 B Explain your choice.	8b. Choose the digit cards that will complete this number sentence by finding the possibilities for '?'. 3 ? ? 9 8 Use facts up to 12×3 to help.	What do you notice about the pattern? Comparing, inequality symbols, column multiplication, exchange, how do we record the exchange? How can we partition our number? Remainder,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

3 times tables	Complete the number sentences. 1 triangle has 3 sides. $1 \times 3=3$ 3 triangles have \qquad sides in total. $3 \times \ldots=$ \qquad \qquad 5 triangles have sides in total. \qquad $=6$ 5 triangles have \qquad \qquad $\times \ldots=$ \qquad	Start this rhythm: Clap, clap, click, clap, clap, click. Carry on the rhythm, what will you do on the 15th beat? How do you know? What will you be doing on the 20th beat? Explain your answer.	Sort the cards below so they follow round in a loop. Start at 18 - 3 Calculate the answer to this calculation. The next card needs to be begin with this answer.	scaling, times as many, systematically, possibilities,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply by 8	Use knowledge of multiplying by 4 to support this learning. How many legs altogether do four spiders have? There are \qquad legs on each spider. \qquad $+$ $+$ \qquad $+$ \qquad = \qquad $-\times 8=$ \qquad If there are \qquad spiders, there will be \qquad legs altogether.	Start each function machine with the same number. What do you notice about each final answer? Tommy knows the 4 times table table, but is still learning the 8 times table table. Which colour row should he use? Why?	9b. Using the digit cards, complete the number sentences below. \square x $1=$ \square x \square $=$ \square x $2=48$ $\begin{array}{\|l\|l\|} 24 & \boxed{48} \\ 8 & 6 \end{array}$	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Related calculations		Is Mo correct? Explain your answer.	8b. Here are some digit cards. Create five different multiplication or division calculations.
Reasoning about multiplication.			
Multiply 2 digits by 1 digit - no exchange.	Annie uses place value counters to work out 34×2 Use Annie's method to solve: 23×3 32×3 42×2 Jack uses Base 10 to calculate 24×4 Use Jack's method to solve: $\begin{aligned} & 13 \times 4 \\ & 23 \times 4 \\ & 26 \times 3 \end{aligned}$	Teddy completes the same calculation as Alex. Can you spot and explain his mistake?	9b. Create and solve a calculation using all the digit cards below. $\therefore \quad 4 \longdiv { 2 } \longdiv { 1 } \mid \longdiv { 8 }$
Multiply a 2 digit number by a 1 digit			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

number - with exchange.				
Link multiplication and division.				
Divide 2 digits by 1 digit flexible partitioning	Ron uses place value counters to solve $84 \div 2$ Use Ron's method to calculate: $84 \div 4$ $66 \div 2$ $66 \div 3$	Teddy answers the question $44 \div 4$ using place value counters. Is he correct? Explain your reasoning.	9a. Solve the problem below. Violet is thinking of a number. I subtract 5 from my number and then divide it by 4. The answer is twenty-one. What is Violet's number?	
Divide a 2 digit number by a 1 - digit number - no exchange.				
Divide 2 digit by 1 digit remainders.	How many squares can you make with 13 lollipop sticks? There are \qquad lollipop sticks. There are \qquad groups of 4 There is \qquad Iollipop stick remaining. \qquad \\| $13 \div 4=$ \qquad remainder Use this method to see how many triangles you can make with 38 lollipop sticks.	Which calculation is the odd one out? Explain your thinking. $64 \div 8$ $77 \div 4$	Jack has 15 stickers. He sorts his stickers into equal groups but has some stickers remaining. How many stickers could be in each group and how many stickers would be remaining?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

How many
ways?
Systematically list possible combinations from two groups of objects.
 Complete the table to show how many different outfits he can make.

5b. Ruzayynah says she can have 12
different combinations from the menu.

Drink	Snack
Coke	Crisps
Juice	Chocolate
Lemonade	Fruit

Is she correct? Prove it.

What could she have chosen? How many different possibilities are there?
\qquad \times \qquad $=$

[^1]| Near 3 | | | | |
| :--- | :--- | :--- | :--- | :--- |
| Number: Fractions | | | | |
| Objective | Skill it | Apply it | Deepen it | Mathematical
 talk |
| What is a
 fraction? | | | | Whole, equal
 parts, four equal
 parts, one half,
 two halves, a
 the
 denominators |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Tenths Count in	If the frame represents 1 whole, what does each box represent? Use counters to represent: - One tenth - Two tenths - Three tenths - One tenth less than eight tenths Children to also explore what happens when counting	Odd One Out Which is the odd one out? Explain your answer.	8a. Joanne is thinking of a tenth. My numerator is an even number. My fraction is a non-unit fraction. The numerator is a multiple of two. What could Joanne's fraction be? Write three possibilities in words. 7b. Use the clues given to find the missing	one? How many tenths make a whole? What is a tenth? Can you see a pattern between the fractions? How can we use our times tables to help us find equivalent fractions?
tenths	beyond $\frac{10}{10}$ The counting stick is worth 1 whole. Label each part of the counting stick. Can you count forwards and backwards along the counting stick?	Teddy is counting in tenths. Can you spot his mistake?	7b. Use the clues given to find the missing fraction. I count backwards ten tenths. I count forwards seven tenths My answer is $1 \frac{2}{10}$. What fraction did I start with?	Compare, order, addition and subtraction of fractions,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Fractions of a set of objects	Children start by finding a unit fraction of a set of objects before finding a non-unit fraction of a set of objects. Find $\frac{1}{5}$ of Eva's marbles. (1)(1)(1)(1)(1)(1) I have divided the marbles into \square equal groups. There are \square marbles in each group. $\frac{1}{5}$ of Eva's marbles is \square marbles. Dexter has used a bar model and counters to find $\frac{3}{4}$ of 12 Use Dexter's method to calculate: $\frac{5}{6}$ of $12 \quad \frac{2}{3}$ of $12 \quad \frac{2}{3}$ of $18 \quad \frac{7}{9}$ of 18	4b. Humza thinks he has found $\frac{1}{8}$ of 64 using place value counters. Is Humza correct? Convince me. 6b. Lucy and Joseph are calculating fractions of an amount. Out of 27 ice creams, two thirds are sold. How many are left? There will be 9 left. Lucy There will be 18 left. Who is correct? Explain how you know.	Whitney has 12 chocolates. On Friday, she ate $\frac{1}{4}$ of her chocolates and gave one to her mum. On Saturday, she ate $\frac{1}{2}$ of her remaining chocolates, and gave one to her brother. On Sunday, she ate $\frac{1}{3}$ of her remaining chocolates. How many chocolates does Whitney have left? 8b. Natalia has 66 dinosaur toys. She gives $\frac{6}{11}$ to her brother and $\frac{2}{6}$ to her sister. How many does she have left?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare fractions	Use paper strips to compare the fractions using >, < or $=$ $\frac{3}{4} \bigcirc \frac{1}{4} \quad \frac{1}{6} \bigcirc \frac{5}{6} \quad \frac{3}{8} \bigcirc \frac{5}{8}$ When the denominators are the same, the \qquad the numerator, the \qquad the fraction.	I know that $\frac{1}{3}$ is larger than $\frac{1}{2}$ because 3 is larger than 2 Do you agree with Dora? Explain how you know.	Complete the missing denominator. How many different options can you find? $\frac{1}{2}>\frac{1}{\square}>\frac{1}{10}$
Order fractions	Order the fractions in descending order. $\begin{array}{lllll} \frac{3}{8} & \frac{5}{8} & \frac{1}{8} & \frac{8}{8} & \frac{7}{8} \end{array}$	Is Jack correct? Prove it.	Shade the blank diagrams so the fractions are ordered correctly. Fractions in ascending order Fractions in descending order Create your own diagrams for a friend to solve.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Add fractions	 We can use this model to calculate $\frac{3}{8}+\frac{1}{8}=\frac{4}{8}$ Draw your own models to calculate $\frac{1}{5}+\frac{2}{5}=\frac{\square}{5} \quad \frac{2}{7}+\frac{3}{7}+\frac{1}{7}=\square \quad \frac{7}{10}+\frac{\square}{\square}=\frac{9}{10}$	Rosie and Whitney are solving: $\frac{4}{7}+\frac{2}{7}$ Rosie says, The answer is $\frac{6}{7}$ Whitney says, The answer is $\frac{6}{14}$ Who do you agree with? Explain why.	Mo and Teddy share these chocolates. They both eat an odd number of chocolates. Complete this number sentence to show what fraction of the chocolates they each could have eaten. $\frac{\square}{\square}+\frac{\square}{\square}=\frac{12}{12}$
Subtract fractions	Use the models to help you subtract the fractions. $\square \backslash \backslash \frac{5}{7}-\frac{\square}{7}=\frac{\square}{7}$ $\square \frac{4}{8}-\frac{\square}{8}=\frac{\square}{8}$ पायाण $\frac{\square}{9}-\frac{\square}{9}=\frac{4}{9}$	Jack and Annie are solving $\frac{4}{5}-\frac{2}{5}$ Jack's method: Annie's method: They both say the answer is two fifths. Can you explain how they have found their answers?	How many fraction addition and subtractions can you make from this model?
Fractions and scales.			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

\begin{tabular}{|c|c|c|c|c|}
\hline Subtract money \& \begin{tabular}{l}
Tommy has \(£ 1\) and 72p. Rosie has \(£ 2\) How much more money does Rosie have than Tommy? \\
Rosie has \(\qquad\) p more than Tommy.
\end{tabular} \& \begin{tabular}{l}
Three children are calculating \(£ 4\) and 20 p subtract \(£ 1\) and 50 p.
\[
\begin{array}{ll}
£ 4-£ 1=£ 2 \& \text { बO- } \\
20 p-50 p=30 p \& \text { Annie } \\
£ 1+30 p=£ 1 \text { and } 30 p \&
\end{array}
\] \\
Teddy \\
The difference is \(£ 2\) and 70 p. \\
\(£ 4\) and \(20 p-£ 2=£ 2\) and 20 p \\
\(£ 2\) and \(20 p+50 p=£ 2\) and \(70 p\) \\
Who is correct? Who is incorrect? \\
Which method do you prefer?
\end{tabular} \& \begin{tabular}{l}
9b. Complete the subtraction using the cards below so that the answer is greater than 634 p but less than \(£ 8\) and 42p.

\square

5
\end{tabular} \&

\hline
\end{tabular}

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 3

Measurement: Length and perimeter
Objective Skill it Apply it

Deepen it
Mathematical talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measure in metres and centimetres.	Measure the lines to the nearest centimetre. Can you measure the lines in millimetres?	Tommy thinks that this chocolate bar is 4 cm long. Is he correct? Convince me.	7b. This man is 1 m and 76 cm tall. Find 3 objects in your classroom that are shorter than the man. Write the measurements of the objects carefully in m and the closest 1 cm .	Height, length, compare, measure, long, short, longer, taller, shorter, narrow, wide, centimetre, metre, kilometre, millimetre, nearest cm, measuring from 0 , how long is? How
Measure in mm				tall is? Orientation, when
Measure in cm and mm				would we measure in
Metres, centimetres and millimetres.				metres? When would we measure in cm ? estimating prior to

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Equivalent lengths m and cm	$\mathrm{b}=$ \qquad cm $\mathrm{c}=$ \qquad cm 1 metre $=$ \qquad cm Can you match the equivalent measurements?	Three children are partitioning 754 cm Teddy says, 75 m and 4 cm Whitney says, 7 m and 54 cm Jack says, (9) 54 cm and 7 m Who is correct? Explain why.	9a. Stanley has used digit cards to make two pairs of equivalent lengths. Which digit cards could he have used?	measuring, perimeter, $100 \mathrm{~cm}=1 \mathrm{~m}$ $10 \mathrm{~mm}=1 \mathrm{~cm}$ Convert, what is perimeter?
Equivalent lengths mm and cm	Fill in the blanks.	Rosie is measuring a sunflower using a 30 cm ruler. Rosie says, Rosie is incorrect. Explain what mistake she might have made. How tall is the sunflower?	9b. Find the odd one out. A. B. C. D. 235 mm \qquad Write 2 equivalent lengths for the odd one out. Not to scale	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 3								
Measurement: Time								Mathematical Talk
Objective	Skill it	Apply it	Deepen it					

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Telling the time to five minutes	Give each child a clock with moveable hands. Children represent different times to the nearest 5 minutes on their own clock. Discuss whether the minute hand is past or to the hour in different times. What time is shown on each clock? \qquad minutes past \qquad \qquad minutes to \qquad	This clock has lost its minute hand. What time could it be? Justify your answer.	7b. Find the odd one out. A. Twenty minutes to nine B. Twenty minutes past nine C. Ten minutes to four D. Twenty minutes past eight	clock, half past, clock, watch, hands, minutes, how long ago?, how long will it be to...?, how long will it take to...?, how often...?, always, never, often, sometimes, usually, once, twice etc., first, second, next, twelve hour,
Telling the time to the minute	Show children various times to the nearest minute for them to read. Give each child a clock with moveable hands. Children represent different times to the nearest minute on their own clock. Discuss whether the minute hand is past or to the hour in different times. Draw the hands on the clock from the following times. Four minutes to 4 24 minutes to 8 24 minutes past 8	5b. The time is twenty-four minutes to ten. Which arrow is the correct minute hand? Explain why.	This clock has lost its minute hand. What time could it be? Could it be more than one time?	twenty-four hour, roman numerals I to XII, analogue, digital can you show me..., duration, compare, hour, what time does the day start? Which hand shows the

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Using a.m. and p.m.	Using a visual timetable, sort the events into morning and afternoon. Create sentences to describe when events take place. For example: Maths is in the morning. Guided Reading is in the afternoon.	Who is more likely to be correct? Explain how you know.	7b. Write down an activity you might do during the times listed below. Tick to show if the time is a.m., p.m. or both.					minutes/hours? Am/pm, clockwise, anticlockwise, seconds,
			Time	Activity	a.m.	p.m.	Both	
			8:48					
			7:16					
			10:06					
			9:22					
24 hour clock	Create a diary using pictures to show your day from waking up to going to bed. Label these events using both 12 -hour clock and 24-hour clock times.	Is Teddy correct? Prove it.	7b. He station	an inform hows wh	boa ains	ard at ave.		
				in A		2:09		
		it has to be 8 o'clock.		in B		3:34		
		5		in C		9:48		
		(®)		in D		5:27		
		Teddy		in E		6:21		
			Put the trains in order from latest leaving to earliest leaving in the day.					

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Finding the
 duration | Calculate the duration of the TV programmes.
 TV Programme Start Time Finish Time Duration
 Pals $06: 30$ $07: 30$
 Dennis the
 explorer $15: 15$ $18: 15$
 The football
 show $12: 00$ $14: 00$
 An adventure $10: 40$ $12: 40$ |
| :--- | :--- | :---: | :---: | :---: |

8b. Piper the Witch has 1 hour and 3 minutes to brew a potion. She mixes ingredients for 27 minutes, lets it boil for 18 minutes and cackles for 13 minutes.

How much time does she have left?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Start and end times	Which activity ends the latest? Gymnastics starts at \square 15:30 and lasts 1 hour 15 minutes. Football starts at \square 16:05 and lasts 45 minutes.	School ends in 45 minutes. What time will it be? Who do you agree with? Explain why.	Tommy is halfway through watching his favourite TV programme. He looks at his watch and it shows this time. 15:45 The show is less than 1 hour long. What could the start and end time be? How many different start and end times can you find?
Measuring time in seconds	Match the times in words to the times shown on the stopwatches. Two minutes five seconds 10 seconds less than 2 minutes Two minutes 50 seconds 150 seconds Children could also record time using stopwatches completing different activities e.g. 10 star jumps.	Alex takes 153 seconds to skip around the playground. 23 seconds. Who is the quickest? Explain how you know.	9b. Sue's answers could be incorrect.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Use Roman	Through reading a range of analogue clocks - children start to recognise roman numerals I- numerals I to XII to tell and write the	XII as 1-12.
time		

Year 3				
Measurement: Mass, Capacity and temperature				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Use scales				Full, half full, empty, holds
Measure mass in grams				weight, weighs, balances, heavy, heavier, heaviest,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance				
Measure Mass in kilograms and grams.			Using only 3 objects and a weighing scale, try to get as close to 2 kg as possible. Explain why you chose those objects. Work out how much more or how much less is needed to make it 2 kg .	light, lighter, lightest, scales, capacity, volume, mass, temperature, degrees, grams, kilograms, millilitre, litre, centigrade, thermometer, volume, millilitre, litre, how could you tell something is lighter than....? How much heavier is.... than....? Estimate, scale,
Equivalent masses (kilograms and grams)				how is scale like a number line? Compare, what is the same/different

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare Mass		The flour weighs more because 2 kg is more than Alex 700 g . Who do you agree with? Explain your answer.	8a. The bucket and spade weighs more than the sharpener but less than the tractor, and over $\frac{1}{2}$ the mass of the dice. What could the bucket and spade weigh? Write down 3 possibilities.	between capacity and volume?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

and volumes (litres and millilitres).				
Compare capacity and volume.	Complete the sentences. \square cans of pop are equal to \square jug of orange juice. 1 can of pop is equal to \square jug of orange juice.	Container 1 Container 2 Is Eva correct? Explain your answer.	Rosie has a litre bottle of water. She pours a drink for herself and two friends. Their glasses can hold up to 250 ml . Teddy has more than Amir. Rosie has the most. How much could each child have in their glass? How much would be left in the bottle? Is this the only way?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 3

Geometry: Properties of Shape

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Objective	Skill it	Apply it	Deepen it	Mathematical talk
Turns and angles	Take children outside or into the hall where they can practice moving in turns themselves. Label 4 walls/points (for example: North, South, East, West). Give children instructions to encourage them to make $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}$ and whole turns from different starting points. Allow children the opportunity to give instructions too. Look at the hands of the clock. Turn the minute hand one quarter of a turn clockwise. Where is the large hand pointing? What is the new time?	The arrow on a spinner started in this position. After making a turn it ended in this position. Who do you agree with?	The letter ' X ' has four angles. Write your name in capital letters. How many angles can you see in each letter? How many angles are there in your full name?	Group, sort, cube, cuboid, pyramid, prism, sphere, cone, cylinder, circle, triangle, square, rectangle, shape, flat, curved, straight, round, corner (point, pointed) hollow, solid, face, side, edge, make, build, draw, direction, journey, left, right, up down, forwards, backwards,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Draw straight lines accurately through measuring	Measure these lines. Record your measurements in cm and mm . \qquad	Alex measures the line. 1 2 3 4 5 6 7 8 9 10 11 12 13 She says it is 10 cm 4 mm Is Alex correct? Explain why.	\square \square Use straight lines to show the route the car could take to get out of the maze. Work out the length of the route to the nearest cm Is this the shortest route?	polygon, hexagon, octagon, vertices, 2d, 3d, quadrilateral, dimensional, flat, acute, obtuse, curved faces, what is the difference between 2d and 3d shapes? Regular and irregular shapes, show me a vertex, vertical, horizontal, how

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Making 3d shapes	Children make a 3-D shape using Play-Doh/clay/plasticine/ polydron. Ask them to make a different one to their partner. Write down the similarities and differences between them. Discuss what the properties of each shape are.	Rosie says, Explain the mistake Rosie has made. How many straws and balls of Play-Doh would you need to create a pyramid?	I have 9 straws and 6 balls of Play-Doh. What 3-D shape can I create using all of the straws and Play-Doh? Have a go at making it.

Year 3

Statistics (can link across curriculum e.g. COMPUTING/Topic/P.E)
Objective Skill it
Apply it \quad Deepen it

Mathematical Talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Chart, bar chart, frequency table, Carroll diagram, Venn diagram, axis, axes, diagram pictograms, Chart, bar chart, table, axis, block diagrams, tally chart, quantity, diagram, one to one correspondence, what will each symbol be worth? What will each

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4				
Number: Place Value				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Represent numbers to 1000	There are \qquad hundreds, \qquad tens and \qquad ones. The number is \qquad When a number has no \qquad , then we use \qquad as a placeholder. What numbers are represented?	What mistake has Ron made? What is the number?	Whitney and Dexter have each made a number. What numbers have they made? What is the same about their numbers? What is different?	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s), compare, (in) order/ a different order,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Round to the nearest 10 up to 10,000	The two multiples of 10 the number lies between are \qquad and \qquad \qquad is closer to \qquad than \qquad \qquad rounded to the nearest 10 is \qquad Use the number lines to help you complete the sentences. 13 is closer to \qquad than \qquad 13 rounded to the nearest 10 is \qquad	Annie and Jack are rounding 562 to the nearest 10 Who do you agree with? Explain your answer.	When rounded to the nearest 10 , there are 350 children in a running club. How many children could there be?	size, value, between, halfway between, above, below. Numbers to one hundred, hundreds, partition, recombine, hundred more/less, numbers to one thousand, numbers to 10,000 , tenths, hundredths, decimal (places), round (to nearest), thousand more/less than, negative integers, counting through zero, roman numerals (I to C). estimate, how do we say this number? What numbers

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Round to the nearest 100 up to 10,000	- Round each number to the nearest 100	5b. Juliette says, Do you agree? Explain why.	Tommy is thinking of a number. What number could Tommy be thinking of? How many answers can you find?
Round to the nearest 1000	- Round each number to the nearest 1,000 four thousand, six hundred and forty-three	496 cannot round to the nearest 1,000 as it has fewer than 5 hundreds. Do you agree with Tiny? Explain your answer.	Rosie makes a 4-digit number using the digit cards. 6 4 9 5 What number could Rosie have made? Is there more than one possibility?

complete the partwhole? How many tens are there? How many ones are there? Do groups of ten help you count? When ordering your numbers do you look at the tens or ones? Are the numbers in the sequence getting larger or smaller? Thousands, 3 digit numbers, 100s, 10s and 1s, place value grid, place holder (0), what is the value of each interval on the number line? How many hundreds are there? 10 more, 10 less, 100 more, 100 less, compare, what strategies did you use to compare the numbers?, order, ascending, descending, how do you know when you

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Number line to 10,000	Mark the positions of the numbers on the number line.	Label 2,900 on each number line.	could the start and end numbers be?	have created the smallest/greatest number? What does each base ten represent? Can you represent the number in another way? Part-whole, what are the values at the start and end point of the number line? Estimate, greater than, less than, equal to, inequality symbols, order, ascending, descending, what patterns do you see in the Roman Numeral system? Negative numbers
			6,000	
Partition four digit numbers	\qquad has \qquad hundreds, \qquad tens and \qquad ones. \qquad \qquad $+$ \qquad The number that is made up of \qquad hundreds, \qquad tens and \qquad ones is \qquad Use the base 10 to help you complete the number sentences. $451=400+$ \qquad $+$ \qquad	Explain the mistake that Tiny has made. What is the whole?	Dexter is thinking of a number. What could Dexter's number be? Find each possibility and partition it.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Partition
numbers to
10,000

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Flexible partitioning children to recognise that whole numbers can be split into many different ways	Complete the part-whole models.	Which is the odd one out? 3,500 3 thousands +50 tens 2 thousands +15 hundreds 35 tens Explain how you know.	Some place value counters are hidden. The total is six thousand, four hundred and thirty-two. Which place value counters could be hidden? Find at least three solutions.
Estimate on a number line to 10,000	- Mark the midpoint of each number line. What number does each midpoint represent?	Miss Rose has spilt some paint on the number line. Estimate three numbers that could appear under the paint. Explain your answers.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

$\begin{aligned} & \text { Count in } \\ & 1000 \mathrm{~s} \end{aligned}$	How many sweets are there altogether? There are three jars of \qquad sweets. There are \qquad sweets altogether.	Rosie says, If I count in thousands from zero, I will always have an even answer. True or false? Explain how you know.	9b. Glenn rolls a dice to add or subtract $1,000 \mathrm{~s}$. If he rolls an even number he adds that number of thousands. If he rolls an odd number he subtracts that number of thousands. If he only uses three of the dice, what could his total be? Find four possibilities.
Recognise negative numbers	Fill in the missing temperatures on the thermometers.	Can you spot the mistake in these number sequences? a) $2,0,0,-2,-4$ b) $1,-2,-4,-6,-8$ c) $5,0,-5,-10,-20$ Explain how you found the mistake and convince me you are correct.	Teddy counted down in 3s until he reached -18 He started at 21 , what was the tenth number he said?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4				
Number: Addition and Subtraction				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Add 1s, 10s, 100s and 1000s introduction of adding 1000s.	Use concrete representation Use a place value chart to complete the number sentences. $\begin{aligned} & 1,364+3= \\ & 1,364+30= \\ & 1,364+300= \\ & 1,364+6,000= \end{aligned}$	Complete the sequence. 1,040 1,440 \square \square 2,640 What is the sequence increasing by each time? Explain how you know.	How many ways can you make the total x, using the digit cards below by adding?	What does part mean? What does whole mean? How many where there at the start?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Subtract 1s, 10s, 100s and 1000s introduction of subtracting 1000s.	Use concrete representation Use a place value chart to complete the number sentences. $\begin{aligned} & 1,364-1= \\ & 1,364-60= \\ & 1,364-200= \\ & 1,364-1,000= \end{aligned}$	Rosie is finding the missing number in___ $300=2,895$ What mistake has Rosie made? Work out the missing number.	How many ways can you make the total x, using the digit cards below by subtracting?	Which number represents the total? Number bonds, number line, add, more, plus, make, sum, total, altogether, inverse, double, near

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Subtract two
4-digit
numbers -
no
exchange.

Find the missing numbers.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Estimate answers using knowledge of rounding.	3,341 rounded to the nearest thousand is \qquad Use the rounded amounts to estimate $3,341-1,880$ Use column subtraction to work out the actual answer.	The children are estimating the answer to $4,502-1,414$ Which children have rounded correctly? What mistake has been made? Whose calculation was easiest? Whose estimate was most accurate?	Roll a 6-sided dice eight times. Write each number in one of the boxes. Now work out your addition. Compete against a partner. Who can get an answer closest to 5,000?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4						
Objective	Skill it	Number: Multiplication and Division	Deepen it	Mathematical Talk		

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply by 10 using up to a 4 digit number	 Write the calculation shown by the place value counters. Each row has \qquad tens and \qquad ones. Each row has a value of \qquad . There are \qquad rows. The calculation is \qquad \times \qquad $=$ \qquad Use place value counters to calculate: 10×3 4×10 12×10	Always, Sometimes, Never If you write a whole number in a place value grid and multiply it by 10 , all the digits move one column to the left. Explain your answer.	Annie has multiplied a whole number by 10 Her answer is between 440 and 540 What could her original calculation be? How many possibilities can you find?	Odd, even, count in twos, threes, fives, count in tens (forwards from/ backwards from), how many times, lots of, groups, once, twice, three ties,
Multiply by 100 - using up to a 3 digit number	$3 \times=-=3 \text { ones }=3$ Complete: $3 \times \mathrm{F}={ }^{2}+\text { tens }=$ \qquad	Show other way of multiplying by 100, 10 $\times 10$, to get the same answer. Which representation does not show multiplying by 100 ? Explain your answer.	7b. Use the digit cards to complete the calculations. You can use each card more than once. 9 4 1 3 0 $x 8 \times 100>5 x$ \square x 100 \square x $7 \times 10 \times 10<2 \times$ \square x 100 Investigate the possible calculations.	five times, multiple of, multiply, multiply by, repeated addition, array, row, column, double, halve, share, share equally, group in pairs, threes etc., equal groups of, divide, divided by, left, left over, describe the rule, product, multiples of; four, eight, fifty and one hundred, scale up, multiplication

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Divide by 10 using up to a 4 digit number	Use place value counters to show the steps to divide 30 by 10 Can you use the same steps to divide a 3-digit number like 210 by 10?	While in Wond and everything around her be Are these mea Can you fill in Can you expla Write a calcula each item.	land, Alice d hrank. All th me ten time rements cor missing m what Alice d on to help yo	k a potion tems maller! ct? surement? wrong? explain	Four children are in a race. The numbers on their vests are: Use the clues to match each vest number to a child. - Jack's number is ten times smaller than Mo's. - Alex's number is not ten times smaller than Jack's or Dora's or Mo's. - Dora's number is ten times smaller than Jack's.	facts up to 12 x 12, division facts, inverse, derive, equal, unequal, why are we using the addition symbol? Multiplication, lots of, arrays, commutative, times tables, how many do you have to begin with? Division, what is the same/different about the groups?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply by 1 and 0	Complete the calculation shown by the number pieces. Show 3×0 using concrete manipulatives.	Which answer could be the odd one out? What makes it the odd one out? $\begin{aligned} & 3+0=- \\ & 3-0=- \\ & 3 \times 0= \end{aligned}$ Explain why the answer is different.	Circle the incorrect calculations and write them correctly. $5 \times 0=50$ $19 \times 1=19$ $7 \times 0=7$ $1 \times 1=2$ $0 \times 35=0$ $0 \times 0=1$ $1 \times 8=9$	times bigger/smaller, hundred times bigger/smaller, how can dividing by 10 help you to divide by 100 ? What does zero mean? Fact family, multiples, commutativity, associative law, factors, factor pairs, correspondence problems, bus stop

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Divide by 1 and itself	Use counters and hands to complete. - 4 counters shared between 4 hands \qquad - 4 counters shared between 1 hand \qquad \qquad $\div-$ \qquad - 9 counters grouped in 1 s \qquad $\div \ldots=$ \qquad - 9 counters grouped in 9 s \qquad $\div-$ \qquad	Mo says, 25 divided by 1 is equal to 1 divided by 25 Do you agree? Explain your answer.	Use $<,>$ or $=$ to complete the following: $\begin{aligned} & 8 \div 1 \bigcirc 7 \div 1 \\ & 6 \div 6 \bigcirc 5 \div 5 \\ & 4 \div 4 \bigcirc 4 \div 1 \end{aligned}$ Draw an image for each one to show that you are correct.
Related facts multiplication and division			
Multiples of 3			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Know their 7 times table and division facts with increased fluency	Complete the multiplications. $11 \times 7=$ \qquad - $7 \times 9=$ \qquad $70=$ \qquad $\times 7$ \qquad - $7 \times$ \qquad = 35 \qquad $=1 \times 7$	True or False? $\begin{aligned} & 7 \times 6=7 \times 3 \times 2 \\ & 7 \times 6=7 \times 7+8 \end{aligned}$ Explain your answer to a friend. Prove using a drawing.	Children are arranged into rows of 7 There are 5 girls and 2 boys in each row. There are 84 children in total. How many girls are there?
Building on knowledge of the 1,2 and 10 times tables, explore the 11 and 12 timestables through partitioning.	Fill in the blanks.	Rosie uses a bar model to represent 88 divided by 11 Explain Rosie's mistake. Can you draw a bar model to represent 88 divided by 11 correctly?	Here are the prices of tickets to see a play. What possible combination of adults and children could attend if they spend $£ 60$? How many possibilities are there?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

			Here is one batch of muffins. Teddy bakes 11 batches of muffins. How many muffins does he have altogether? In each batch there are 3 strawberry, 3 vanilla, 4 chocolate and 2 toffee muffins. How many of each type of muffin does Teddy have in 11 batches? Teddy sells 5 batches of muffins. How many muffins does he have left?
11 times-table and division facts			
12 times-table and division facts			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply 3 numbers	Use counters or cubes to represent the calculations. Choose which order you will complete the multiplication. $5 \times 2 \times 6$ $8 \times 4 \times 5$ $2 \times 8 \times 6$	Is the statement true or false? $9 \times 8=9 \times 4 \times 2$ Explain your reasoning.	Choose three digit cards. Arrange them in the calculation. \square \times \square \times \square $=$ \square How many different calculations can you make using your three digit cards? Which order do you find it the most efficient to calculate the product? How have you grouped the numbers?
Recognise factors and factor pairs	, Here is an example of a factor bug for 12 Complete the factor bug for 36 Are all the factors in pairs? Draw your own factor bugs for 16, 48, 56 and 35	The greater the number, the more factors it will have. Is Tommy correct? Use arrays to explain your answer.	Some numbers are equal to the sum of all their factors (not including the number itself). e.g. 6 6 has 4 factors, 1, 2, 3 and 6 Add up all the factors not including 6 itself. $1+2+3=6$ 6 is equal to the sum of its factors (not including the number itself) How many other numbers can you find that are equal to the sum of their factors? Which numbers are less than the sum of their factors? Which numbers are greater than the sum of their factors?
Use factor pairs			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Children develop their mental multiplication by exploring different ways to calculate (efficient multiplication).	Class 4 are calculating 25×8 mentally. Can you complete the calculations in each of the methods? Method 1 $\begin{aligned} & \frac{\text { Method } 2}{25 \times 8=5 \times 5 \times 8} \\ & =5 \times \square=\square \end{aligned}$ Method 3 $\begin{aligned} & \frac{\text { Method } 4}{25 \times 8}=50 \times 8 \div 2 \\ & =\square \div \square=\square \end{aligned}$ Can you think of any other ways to mentally calculate 25×8 ? Which do you think is the most efficient? How would you calculate 228×5 mentally?	Teddy has calculated 19×3 0000000000000000000 -000000000000000000 $\begin{aligned} & 20 \times 3=60 \\ & 60-1=59 \\ & 19 \times 3=59 \end{aligned}$ Can you explain his mistake and correct the diagram?	8 b . Roll a dice four times to create a calculation that multiples a 3-digit number by a 1 -digit number. Solve the multiplication using an efficient method.
Use informal written methods to multiply 2 digit and 1 digit numbers.	There are 8 classes in a school. Each class has 26 children. How many children are there altogether? Complete the number line to solve the problem. Use this method to work out the multiplications. $16 \times 7 \quad 34 \times 6 \quad 27 \times 4$	Ron is calculating 46 multiplied by 4 using the part-whole model. Can you explain Ron's mistake?	Here are 6 multiplications. Which of the multiplications would you calculate mentally? Which of the multiplications would you use a written method for? Explain your choices to a partner. Did your partner choose the same methods as you?

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Divide 2 digit by 1 digit numbers with remainders	Whitney uses the same method, but some of her calculations involve an exchange. Use Whitney's method to solve $57 \div 4$ $58 \div 4$ $58 \div 3$	Rosie writes, $85 \div 3=28 r 1$ She says 85 must be 1 away from a multiple of 3 Do you agree?	9a. Divide the following number by the numbers on the digit cards. Order the calculations in ascending order by the size of their remainders.
Divide 3 digit by 1 digit numbers with no remainders	Annie is dividing 609 by 3 using place value counters. Use Annie's method to calculate the divisions. $906 \div 3 \quad 884 \div 4 \quad 884 \div 8 \quad 489 \div 2$	6b. Gareth says, Is he correct? Convince me.	You have 12 counters and the place value grid. You must use all 12 counters to complete the following. Create a 3-digit number divisible by 2 Create a 3-digit number divisible by 3 Create a 3-digit number divisible by 4 Create a 3-digit number divisible by 5 Can you find a 3-digit number divisible by $6,7,8$ or 9 ?
Once children show confidence in partition of numbers using			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

place value grid introduce bust stop as a short division written method.			
Correspondence problems	An ice-cream van has 4 flavours of ice-cream and 2 choices of toppings. How many different combinations of ice-cream and toppings can be made? Complete the multiplication to represent the combinations. $\ldots \times \ldots=$ \qquad There are \qquad combinations.	Alex has 6 T-shirts and 4 pairs of shorts. Dexter has 12 T -shirts and 2 pairs of shorts. Who has the most combinations of T shirts and shorts? Explain your answer.	Here are the meal choices in the school canteen. There are 2 choices of starter, 4 choices of main and 3 choices of dessert. How many meal combinations can you find? Can you use a systematic approach? Can you represent the combinations in a multiplication? If there were 20 meal combinations, how many starters, mains and desserts might there be?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4					
Number: Fractions					
Objective	Skill it		Apply it	Deepen it	Mathematical Talk
Explore fractions in different representations - what is a fraction?	Here are 9 cards. Sort the cards into different groups. Can you explain how you made your decision? Can you sort the cards in a different way? Can you explain how your partner has sorted the cards?		Always, Sometimes, Never? Alex says, Explain your answer.	7b. Which image is the odd one out? A. \square B. Redraw the image to show the correct fraction and create one of your own.	tenths, equivalent decimals and fractions, Whole, equal parts, four equal parts, one half, two halves, a quarter, two quarters, fraction, three quarters, one third, a third, equivalence, equivalent,
Understand the whole.					unequal, are the

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Equivalent fractions through diagrams starting to recognise a link with multiplication/ division	How many fractions that are equivalent to one half can you see on the fraction wall?
Draw extra rows to show other equivalent fractions.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Convert mixed numbers to improper fractions.			
Convert improper fractions to mixed numbers.			
Add 2 or more fractions same denominator	Use the number line to add the fractions. $\frac{4}{9}+\frac{5}{9}+\frac{8}{9} \quad \frac{1}{9}+\frac{11}{9}+1 \quad \frac{\square}{9}+\frac{5}{9}+\frac{7}{9}=\frac{17}{9}$	Alex is adding fractions. $\frac{3}{9}+\frac{2}{9}=\frac{5}{18}$ Is she correct? Explain why.	How many different ways can you find to solve the calculation? $\frac{\square}{\square}+\frac{\square}{\square}=\frac{11}{9}$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4				
Number: Decimals				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Recognise tenths and hundredths	If the hundred square erepesents one whole:	Who is correct?	Ron says he can partition tenths and hundredths in more than one way. Use Ron's method to partition 42 hundredths in more than one way.	Decimals, tenths, hundredths, equivalent decimals and fractions, order, compare, place value, what is a tenth? Where would we use tenths in real life? How many tenths are equivalent to a whole? Number line, relevant scale, divide by 10 - split into 10

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Make a |
| :--- | :--- |
| whole from |
| tenths and |
| hundredths | | Here is a hundred square. |
| :--- |
| How many hundredths are shaded? |
| How many more hundredths do you nees |
| to shade so the whole hundred square is |
| shaded? |
| _hundredths +__ hundredths $=1$ whole |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order decimals up to 2 decimal place	Write down the decimals represented in the place value grid and then place them in ascending order	Spot the Mistake Rosie is ordering some numbers in ascending order: $0.09<0.99<10.01<1.35<9.09$ Can you explain her mistake?	Some children have planted sunflowers and have measured their heights.
	Ones ϕ Tenths Hundredths 0 Ones ϕ Tenths Hundredths		
			Child Height
	Ones \quad Tenths Hundredths 0 0 0		Beth 1.23 m
			Tony $\quad 0.95 \mathrm{~m}$
			Rachel 1.02 m
			Kate 1.2 m
			Emma 0.97 m
			Order the children based on the heights of their sunflowers in both ascending and descending order.
Round decimals up to 1 decimal place to nearest whole number	Which integers do the decimals lie between?	Mo says 0.4 rounded to the nearest whole number is zero. Whitney says 0.4 rounded to the nearest whole number is one. Who is correct? Why?	A number with one decimal place rounded to the nearest whole number is 45 What could the number be?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Write halves and quarters as decimals	Here is a rekenrek with 100 beads. \qquad out of 100 beads are red. \qquad out of 100 beads are white. \square are red, and $\frac{\square}{100}$ are white. Half of the beads are red, and half of the beads are white. $\frac{1}{2}=\frac{50}{100}=\frac{5}{10}$, so $\frac{1}{2}$ is \qquad as a decimal.	Dexter has made a mistake when converting his fractions to decimals. $\frac{1}{2}=1.2, \frac{1}{4}=1.4 \text { and } \frac{3}{4}=3.4$ What mistake has Dexter made?	9b. I'm thinking of a fraction. One of the values is 36 . It is equivalent to 0.75 . What could my fraction be?

Year 4				
Measurement: Length and perimeter				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Measure in kilometres and metres.			Height, length, compare, measure, long,	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Equivalent lengths Kilometres and metres.	Complete the statements. $3,000 \mathrm{~m}=$ \qquad km $5 \mathrm{~km}=$ \qquad m 500 m = \qquad km $9,500 \mathrm{~m}=$ \qquad km	2b. Is the following statement correct? Explain your answer.	Complete the missing measurements so that each line of three gives a total distance of 2 km .	short, longer, shorter, narrow, wide, centimetre, metre, kilometre, perimeter, rectilinear, taller, millimetre, nearest cm, measuring from 0 , how long is? How tall is? Orientation, when would we measure in metres? When would we measure in cm? estimating prior to

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Perimeter of rectilinear shapes	Calculate the perimeter.		Here is a rectilinear shape. All the sides are the same length and are a whole number of centimetres. Which of these lengths could be the perimeter of the shape? $48 \mathrm{~cm}, 36 \mathrm{~cm}, 80 \mathrm{~cm}, 120 \mathrm{~cm}, 66 \mathrm{~cm}$ Can you think of any other answers which could be correct?
Find missing lengths in rectilinear shapes.	Find the perimeter of the shapes. Use addition and subtraction to find missing sides.		

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Perimeter of regular polygons.			
Perimeter of polygons.			

Year 4				
Measurement: Area				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Counting squares to find area	There are \qquad squares inside the shape. This means that the area of the shape is \qquad squares. There are \qquad squares and \qquad half squares inside the shape. This means that the area of the shape is \qquad squares. There are \qquad rows. Each row has \qquad squares. There are \qquad squares in total. Count the squares to find the area of each shape.	Jack thinks that the area of this shape is 15 squares. \square It is 5×3 squares. What mistake has Jack made?	A rectangle is made from squares. The end of the rectangle has been torn off. What is the smallest possible area of the original rectangle? What other possible areas could there be?
Make shapes with a given number of squares.	Draw three rectilinear shapes, all with an area of 8 squares. What is the same about each shape? What is different?	Is the statement true or false? There is only one possible way to make a rectangle with an area of 12 squares. Draw a picture to support your answer.	Here is a rectilinear shape. Add 7 more squares to the shape to make a rectangle. Is there more than one possible answer?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4				
Measurement: Money				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Pounds and Pence with the introduction of decimals and money.	How much money is in each purse?	Some children are converting 1206 p into pounds. Who is correct? $1206 p=£ 12.6$ Whitney What have the others done wrong?	She picks three coins at a time. Decide whether the statements will be always, sometimes or never true. - She can make a total which ends in 2 - She can make an odd amount. - She can make an amount greater than £6 - She can make a total which is a multiple of 5 pence Can you think of your own always, sometimes, never statements?	Coins, notes, pounds, pennies, £, P, money, count, pence, change, convert, estimate, compare, greater than, less than, compare, what is the value of the coin/note? How many pennies are there in $£ 1$, do the notes have greater value than coins? How do you know you have made

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Estimate money using knowledge of rounding to support.	Place the amounts on the number line and round to the nearest pound. - £3.67 - $£ 3.21$ - $£ 3.87$	Mo buys some socks and gloves. He estimates how much he'll spend. $£ 4+£ 5=£ 9$ What could the actual price of the socks and gloves have been? Mo has £12 He says he has enough money to buy three pairs of socks. Do you agree? Explain why.	Three children buy toys. Can you work out who buys what? Tommy buys a toy which rounds to $£ 5$ but gets change from £5 Amir buys two toys which total approximately $£ 25$ Eva's toy costs 5 p more than the number the cost rounds to. If you had $£ 30$, what combinations could you buy and what change would you approximately get?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Four operations with money.	A family is going bowling. How much does it cost for 1 child and 1 adult at peak time? How much does it cost for 1 adult and 2 children off peak?				Dexter buys a teddy bear for $£ 6.00$, a board game for $£ 4.00$, a CD for $£ 5.50$ and a box of chocolates for $£ 2.50$ He has some discount vouchers. He can either get $£ 10.00$ off or pay half price for his items. Which voucher would save him more? Explain your thinking.	A class has $£ 100$ to spend on books. Book Prices Hardback = £8 Paperback $=£ 4$
		Tickets	Peak	Off Peak		
		Adult	£8	$£ 6$		
		Child	£4.20			
						How many books could they buy for £100? How many different ways can this be done?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4					
Measurement: Time					
Objective	Skill it	Apply it	Deepen it		Mathematical Talk
Hours, minutes and seconds		Is she correct? Can you explain why?	Five friends ru Their times ar Which child fil to two minutes? What was the fastest time a Give your ans	ce. n in the table. the race the closest nce between the slowest time? minutes and seconds.	Quarter past/to, Time, days of the week: Monday, Tuesday etc., seasons: spring, summer, autumn, winter, day, week, month, year, weekend, birthday, holiday, morning, afternoon, evening, night, midnight, bedtime,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Years, months, weeks and days	Use a calendar to help you complete the sentences. There are \qquad months in a year. There are \qquad days in February. \qquad months have 30 days, and \qquad months have 31 days. There are \qquad days in a year and \qquad days in a leap year.	Always, sometimes or never? There are 730 days in two years. Explain your answer.	Amir, Rosie and Jack describe when their birthdays are. Use the clues to work out when their birthdays are if today is the $8^{\text {th }}$ June.	dinnertime, playtime, today, yesterday, tomorrow, before, after, next, last, now, soon, early, late, quick, quicker, quickest, fast, faster, fastest, slow, lower, slowest, slowly, takes longer, takes less time, hour, ' 0 '
Analogue to digital - 12 hour	The time is \qquad past 10 This can also be written as \qquad minutes past 10 The digital time is \qquad : Write each of these times in the digital format.	Annie converts the analogue time to digital format. Here is her answer. Explain what Annie has done wrong. What should the digital time be?	$12: 21$ On a 12 hour digital clock, how many times will the time be read the same forwards and backwards?	clock, half past, clock, watch, hands, minutes, how long ago?, how long will it be to...?, how long will it take to...?, how often...?, always, never, often, sometimes, usually, once,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4				
Geometry: Properties of Shape				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Identify angles	Sort the angles into acute, obtuse and right angles.	Is the angle acute, obtuse or a right angle? Can you explain why?	9b. Using the digits below can you create more obtuse or acute angles? 2 4 8 1	Group, sort, cube, cuboid, pyramid, sphere, cone, cylinder, circle, triangle, square, rectangle, shape, flat, curved, straight, round, corner (point,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order angles	Order the angles from largest to smallest. Can you draw a larger obtuse angle? Can you draw a smaller acute angle?	Here are five angles. There are two pairs of identically sized angles and one odd one out. Which angle is the odd one out? Explain your reason.	6b. If you join together the end points of the matching lines below, do they make 4 angles in order from smallest to largest? Be sure to compare the smallest side of each angle created.	turn, stretch, bend, size, bigger, larger, smaller, symmetrical, right angle, horizontal, vertical, perpendicular, parallel, greater/ less than ninety degrees, ninety degrees, right angle, orientation, straight lines, prism, quarter turn, three quarter
Triangles	Label each of these triangles: isosceles, scalene or equilateral. Are any of these triangles also right-angled?		Draw two more sides to create: - An equilateral triangle - A scalene triangle - An isosceles triangle Which is the hardest to draw?	turn, pentagon, hexagon, octagon, vertices, 2d, 3d, quadrilateral, dimensional, flat, acute, obtuse, curved faces, what is the difference between 2d and 3d shapes? Regular and

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 4					
Geometry: Position and direction					
Objective	Skill it		Apply it	Deepen it	Mathematical Talk
Describe position read, use and write coordinates, become familiar with notion of brackets and the order in which to read x and y axis.	Write out the coordinate that spell your name				underneath, above, below top, bottom, side, on, in, outside, inside, around, in front, behind, front, back, below, after beside, next to, opposite, apart, between, middle, edge, centre, corner, direction, journey, left, right, up, down, forwards, backwards, sideways, across,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Move shapes and points on a coordinate grid following specific directions using language such as: left/right and up/down.	Translate A 6 right and 3 down. Record the coordinates before (\quad, _) and after (_, _) Translate B and C 4 left and 3 up. Record the coordinates before (\quad,,) and after (_, _)		6b. The point was moved 5 right and 1 up. Eve thinks the original coordinates were (1,1). Is she correct? Prove it.	 Ron translates the point $(2,3)$, but realises that it has returned to the same position. What translation did he do? Is there more than one answer?	under, threequarter turn, quarter turn, stretch, bend, rotation, clockwise, anticlockwise, straight line, ninety degree turn, what direction was the turn, plot, describe the translation, position

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Describe movement on a grid	Describe the translation from: to 3 to \square to to o		Tommy has described the translation from A to B as 3 right and 4 up. Can you explain his mistake?	 Can you plot other pairs of points where to move between them, you travel the same to left or right as you travel up or down? What do you notice about the coordinates of these points?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance			rance	
Year 4				
- Statistics (can link across curriculum e.g. COMPUTING/Topic/P.E)				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Interpret charts	Bar chart, tally chart, pictograms and tables. Complete the table using the information in the bar chart. What is the most/least popular way to get to school? How many children walk to school?	Alex wants to use a pictogram to represent the favourite drinks of everyone in her class. I will use this image to represent 5 children. Explain why this is not a good idea.	Here is some information about the number of tickets sold for a concert. Jack starts to create a bar chart to represent the number of concert tickets sold during the week. What advice would you give Jack about the scale he has chosen? What would be a better scale to use? Is there anything else missing from the bar chart?	Chart, bar chart, frequency table, Carroll diagram, Venn diagram, axis, axes, diagram pictograms, continuous data, line graphs, table, block diagrams, tally chart, quantity, diagram, one to one correspondence, what will each symbol be worth? What will each block be worth?, read and interpret,
Decide what scale will be most appropriate	Children to be provided with data to drawer their own graphs - in an appropriate way to share the data.	Children self-correct as they are drawing explaining why or why not	Link to other areas of the curriculum e.g. science or recording data in P.E.	construct, tables, one and two step problems, what are the different

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

when drawing their own graphs		they have chosen to go in the way they have done.		ways to present data? Scale, sum, comparison,
Solve comparison, sum and difference problems using a given range of scales on charts.	Team How many more points does the Sycamore team have than the Ash team? How many points do Beech and Oak teams have altogether? How many more points do Ash need to be equal to Oak?	 Can you spot Rosie's mistake? How many people were asked altogether?	Attraction Number of visitors on Saturday Number of visitors on Sunday Animal World Zoo 1,282 2,564 Maltings Castle 2,045 1,820 Primrose Park 1,952 1,325 Film Land Cinema 2,054 1,595 True or false? - The same number of people visited Maltings Castle as Film Land Cinema on Saturday. - Double the number of people visited Animal World Zoo on Sunday than Saturday. - The least popular attraction of the weekend was Primrose Park. What true/false questions can you make?	difference, how are line graphs different to bar charts? Discrete data,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5				
Number: Place Value				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Numbers to 10,000	Match the representations to the numbers. 4,005 4,500 4,050	Tommy says he can order the following numbers by only looking at the first three digits. Is he correct? Explain your answer.	Filip has made five numbers using the digits $1,2,3$ and 4 He is using a letter to represent each digit. Here are his numbers. Use the clues to work out each number. - The first number in the list is the greatest number. - The digits in the fourth number add up to 12 - The third number is the smallest number.	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s), compare, (in) order/ a different order, size, value, between,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Round to nearest 10, 100, 1000 and 10,000	8,317 people attend a pop concert. Round the number of people at the concert to the nearest 10 Round the number of people at the concert to the nearest 100 Round the number of people at the concert to the nearest 1,000	Explain why Tiny is wrong.	When rounded to the nearest 10 , a number is 50 When rounded to the nearest 100 , the number is zero. Find all the possible whole number values of the number.	halfway between, above, below. Numbers to one hundred, hundreds, partition, recombine, hundred more/less, numbers to one thousand, numbers to 100,000 , numbers
Numbers to 100,000	A number is shown in the place value grid. Write the number in figures and in words. - Alex adds 10 to this number - Tommy adds 100 to this number - Eva adds 1,000 to this number Write each of their new numbers in figures and in words.	Rosie counts forwards and backwards in 10s from 317 Circle the numbers Rosie will count. Explain why Rosie will not say the other numbers.		to 10,000 , tenths, hundredths, decimal (places), round (to nearest), thousand more/less than, negative integers, counting through zero, roman numerals (I to C). Estimate, how do we say this number? What numbers complete the part-

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Round numbers within 100,000	The circumference of Earth is 24,901 miles. Round this distance to the nearest 1,000 miles. Round this distance to the nearest 10,000 miles. Which is the better approximation to use? What number is halfway between 40,000 and 50,000 ? Draw an arrow to show the approximate position of 48,725 on the number line. Round 48,725 to the nearest 10,000	By rounding both numbers to the nearest 10,000, estimate the answer to the calculation. $47,826+88,112$ Is your estimate greater than or less than the actual answer? How do you know?	Round 59,996 to the nearest 1,000 Round 59,996 to the nearest 10,000 What do you notice about the answers? Can you think of three more numbers where the same thing could happen?	ascending, descending, how do you know when you have created the smallest/greatest number? What does each base ten represent? Can you represent the number in another way? Part-whole, what are the values at the start and end point of the number line? Estimate, greater than, less

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Negative numbers in context	Use of negative numbers not minus. Estimate and label where $0,-12$ and -20 will be on the number line.	True or False? - The temperature outside is -5 degrees, the temperature inside is 25 degrees. The difference is 20 degrees. - Four less than negative six is negative two. - 15 more than -2 is 13 Explain how you know each statement is true or false.	Put these statements in order so that the answers are from smallest to greatest. - The difference between -24 and -76 - The even number that is less than -18 but greater than -22 - The number that is half way between 40 and -50 - The difference between -6 and 7
Roman numerals to 1000	Each diagram shows a number in digits, words and Roman Numerals.	Do you agree with Rosie? Explain your answer.	Solve $\mathrm{CCCL}+\mathrm{CL}=$ How many calculations, using Roman Numerals, can you write to get the same total?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5

Number: Addition and Subtraction

Objective	Skill it			Apply it	Deepen it				Mathematical Talk
Mental strategies.									
Add whole numbers with more than 4 digits (column) with exchangingbuilding upon previous knowledge)	Use concr Use the colum $\begin{array}{r} 47 \\ +\quad 38 \\ \hline \end{array}$	representa hod to work out $\begin{array}{r} 2 \\ + \\ +5 \end{array} 378$	additions. $\begin{array}{r\|r\|r\|r\|r\|} \hline & 3 & 6 & 4 & 7 \\ \hline+ & 4 & 9 & 2 & 8 \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$	What mistake has been made? $1,562+301=4,572$	Work out th	$\begin{aligned} & \text { he miss } \\ & +\quad \square \\ & +\frac{2}{7} \end{aligned}$			Which number represents the total? Number bonds, number line, add, more, plus, make, sum, total, altogether, inverse, double, near double, half, halve, equals, is the same

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Round to estimate and approximate	Round the numbers to find an estimate of the answer to $6,789+2,870$ 6,789 rounded to the nearest 1,000 is \qquad 2,870 rounded to the nearest 1,000 is \qquad The estimated total is \qquad $+$ \qquad $=$ \qquad Compare the estimate with the actual answer.	Tommy, Amir and Whitney are working out a subtraction. Explain why the children all have different estimates. Work out the actual answer. Whose estimate is most accurate?	When two numbers are rounded to the nearest 10,000, their sum is 100,000 What could the numbers be? Discuss possible answers with a partner. What is the smallest possible actual total of the numbers? What is the greatest possible actual total of the numbers?	enough tens/hundreds/ones to make the exchange? Does it matter which column you subtract first? Efficient, estimate, checking strategies, approximate, accuracy, inverse operations,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

		Which representation does not show multiplying by 100 ? Explain your answer.		double, halve, share, share equally, group in pairs, threes etc., equal groups of, divide, divided by, left, left over, describe the rule, product, multiples of; four, eight, fifty and one hundred, scale up, multiplication facts up to $12 x$ 12 , division facts, inverse, derive, equal, unequal, why are we using the addition symbol?
Multiply by 1000 - using up to a 5 digit number	Write <, > or = to complete the statements. $\begin{aligned} & 71 \times 1,000 \bigcirc 71 \times 100 \\ & 100 \times 32 \bigcirc 16 \times 1,000 \end{aligned}$	Show other way of multiplying by 1000, 10 $\times 10 \times 10$, to get the same answer. Correct the sum below and explain the mistake. $32 \times 100=320$	Jack is thinking of a 3-digit number. When he multiplies his number by 100 , the ten thousands and hundreds digit are the same. The sum of the digits is 10 What number could Jack be thinking of?	Multiplication, lots of, arrays, commutative, times tables, how many do you have to begin with? Division, what is the

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Divide by 10 - using up to a 5 - digit number	What number is represented in the place value chart?
	$H T h$ $T h$ $T h$ H T O O
	If you divide the number by 10 , where do the counters move to? What is the result of dividing the number by 10 ?

While in Wonderland, Alice drank a potion
and everything shrank. All the items
around her became ten times smaller!
Are these measurements correct?

Item	Original measurement	After shrinking
Height of a door	220 cm	$2,200 \mathrm{~cm}$
Her height	160 cm	16 cm
Length of a book	340 mm	43 mm
Height of a mug	220 mm	$?$

Can you fill in the missing measurement?
Can you explain what Alice did wrong?
Write a calculation to help you explain each item.

Four children are in a race. The numbers on their vests are:

Use the clues to match each vest number to a child.

- Jack's number is ten times smaller than Mo's.
- Alex's number is not ten times smaller than Jack's or Dora's or Mo's.
- Dora's number is ten times smaller than Jack's.
same/different about the groups? Common multiples, What do you notice about the pattern? Comparing, inequality symbols, column multiplication, exchange, how do we record the exchange? How can we partition our number? Remainder, scaling, times as many,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find multiples of whole numbers	Use counters to make these and the next three multiples of 5 List the first six multiples of 5 What is the same and what is different about the multiples of 5 ?	Always, Sometimes, Never - The product of two even numbers is a multiple of an odd number. - The product of two odd numbers is a multiple of an even number. Explain your answer.	Find the sum of the digits of all the numbers in the 9 times-table up to 10×9 What do you notice? Find the digit sums of these multiples of 9 648 8,388 9,378 82,602 99,999 What do you notice? What is the connection between numbers that are multiples of 9 and their digit sums?	numbers? Why are cube numbers called cube numbers? In which direction do the digits move when you multiply//divide? Area model,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Know that a cubed number is multiplying a whole number by itself 3 times.	Complete the table.			Rosie says,	Here are three cards.		
	Size of cube	Calculation	Number of cubes				
	1^{3}		1		A	B	C
	2^{3}		8		Each card represents a cube number. Use the clues to work out the numbers. $A \times A=B$ $B+B-3=C$ - digit sum of $\mathrm{C}=\mathrm{A}$		
	3^{3}	$3 \times 3 \times 3$					
	4^{3}						
	5^{3}			Do you agree? Explain your answer.			
	6^{3}	$6 \times 6 \times 6$					

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Use knowledge of multiples of 10,100 and 1000 to answer questions	Work out Show all the 6×40	Itiplication s in your 60×400	$30 \times 8,000$	400×500	Tiny is working out $600 \div 25$ Here are Tiny's workings. $\begin{aligned} & 600 \div 25 \\ & 600 \div 2=300 \\ & 300 \div 5=60 \\ & 600 \div 25=60 \end{aligned}$ Explain why Tiny is incorrect. Find the correct answer.	9 b . The target number is below. nine thousand, nine hundred Use all the digit cards and symbols to create related number sentences that equal the target number.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Short division			
Efficient division			
Solve problems with multiplication and division.			

Year 5				
Number: Fractions				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Find and recognise equivalent fractions using models to link between multiplication and division (both unit and non-unit fractions).	Take two pieces of paper that are the same size. Fold one piece into 2 equal parts and the other piece into 8 equal parts. Explain how the pieces of paper show that $\frac{1}{2}=\frac{4}{8}$ Use more pieces of paper to find other fractions equivalent to one half. Use the bar model to complete the equivalent fractions. $>\frac{2}{6}=\frac{\square}{12} \quad>\frac{3}{6}=\frac{\square}{12} \quad>\frac{4}{6}=\frac{\square}{12} \quad>\frac{5}{6}=\frac{\square}{12} \quad>\frac{6}{6}=\frac{\square}{12}$	Are the statements true or folse? Explain your answers.	Give 2 possible values for A and B. $\frac{2}{A}=\frac{B}{48}=\frac{24}{C}$	tenths, equivalent decimals and fractions, Whole, equal parts, four equal parts, one half, two halves, a quarter, two quarters,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

		Tiny thinks that the number lines show that $\frac{3}{4}$ is equivalent to $\frac{2}{5}$ Is Tiny correct? Explain your answer.	Here are some fraction cards. \square $\frac{4}{A}$ $\frac{B}{C}$ \square $\frac{20}{50}$ Use the clues to work out the values of A, B and C. - All three fractions are equivalent. - $A+B=16$		fraction, three quarters, one third, a third, equivalence, equivalent, unequal, are the parts equal? How do you know? Splitting a whole into two equal parts, 1/2, 1/3, what does the 1 represent, what does the 3 represent. How many thirds make a whole? 1/4, unit fraction,
Find a whole					
Improper fractions to mixed numbers	Tommy uses a bar model to convert the improper fraction $\frac{27}{8}$ to a mixed number. Use Tommy's method to convert $\frac{25}{8}, \frac{26}{8}, \frac{18}{7}$ and $\frac{19}{4}$ to mixed numbers.	Which is greater, $\frac{19}{3}$ or $\frac{25}{4}$? Explain your answer.	9b. Use the nu improper frac Only one card 3	r cards to show an as a mixed number. be used twice. 5 7 9	

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Mixed numbers to improper fractions	Each circle represents one whole. - What mixed number does the diagram show? - What improper fraction does the diagram show?	5b. Karl says, Do you agree with Karl? Explain your answer.	How many different ways can you complete the statements? $2 \frac{\square}{8}=\frac{\square}{8}$ $2 \frac{\square}{5}=\frac{\square}{5}$ Compare answers with a partner. What do you notice?	non-unit fraction, numerators, denominators, $3 / 4$, tenths, decimals, is a fraction always less than one? How many tenths make a whole? What is a tenth?
Number sequences with fractions count up and down	Use the counting stick to count up and down in these fractions. - Start at 0 and count up in steps of $\frac{1}{4}$ - Start at 4 and count down in steps of $\frac{1}{3}$ - Start at 1 and count up in steps of $\frac{2}{3}$	Three children are counting in quarters. Who is counting correctly? Explain your reasons.	Play the fraction game for four players. Place the four fraction cards on the floor. Each player stands in front of a fraction. We are going to count up in tenths starting at 0 When you say a fraction, place your foot on your fraction. $\begin{aligned} & \frac{1}{10} \frac{1}{5} \\ & \frac{3}{10} \frac{1}{2} \end{aligned}$ How can we make 4 tenths? What is the highest fraction we can count to? How about if we used two feet?	Can you see a pattern between the fractions? How can we use our times tables to help us find equivalent fractions? Compare, order, addition and

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare fractions less than 1	Use diagrams to show thot $\frac{4}{5}>\frac{3}{5}$ Explain how you can tell that $\frac{4}{5}>\frac{3}{5}$ without using a diagram.	Annie and Jack are using a number line to work out which fraction is greater, $\frac{5}{6}$ or $\frac{2}{3}$ Will Annie and Jack get the same answer? Show working to support your answer. Which method do you prefer? \qquad	8a. Use two number cards to complete the equation. $\frac{24}{72}<\frac{\square}{\square}<\frac{60}{72}$ 12 25 18 8 36 Find two possibilities.	subtraction of fractions, greater than, how many x make a whole? Quantity, what does equivalent mean? What is a unit fraction? What is a nonunit fraction? Improper
Order fractions less than 1	Order each set of fractions, from greatest to smallest. $-\frac{3}{7} \cdot \frac{3}{5}, \frac{3}{8} \quad-\frac{2}{3}, \frac{5}{6}, \frac{7}{12} \quad>\frac{1}{4} \cdot \frac{2}{5} \cdot \frac{3}{20}$	Tiny is ordering some fractions. $\frac{1}{2}<\frac{2}{5}<\frac{3}{10}<\frac{7}{8}$ Explain the mistake Tiny has made.	Fill in the boxes to make the statement true. $\frac{3}{8}<\frac{\square}{\square}<\frac{3}{4}$ Complete the statement in two different ways. Compare answers with a partner.	fractions, mixed numbers, integer, What is an improper fraction? Convert, number

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare fractions greater than 1	Write $<$ or $>$ to compare the numbers. $4 \frac{1}{2}$ $3 \frac{1}{2}$ $5 \frac{1}{3} \longrightarrow 4$ $2 \frac{4}{5}$ $3 \frac{1}{4}$ $3 \bigcirc 4 \frac{1}{3}$	Eva and Rosie each have two identical pizzas. Who has eaten more pizza? Explain how you know.	7b. Using the clue and digit cards below, complete the statement with improper fractions. $\frac{25}{8}$ 16 50 24 51	sequences, if two fractions have the same denominator/ numerator, how can you decide which one is greater? Why do denominators need to be the same? Multiply, fractions of
Order fractions greater than 1	Use common denominators to put each set of numbers in order, starting with the smallest. $1 \frac{2}{3}$ $1 \frac{7}{24}$ $\frac{11}{12}$	6b. Two children are ordering fractions. $\frac{52}{16} \quad \square \frac{9}{4}$ Imran says, The missing fraction could be $\frac{15}{8}$. Bella says, The missing fraction could be $\frac{20}{8}$. Who is correct? Convince me.	What mixed numbers and improper fractions can Tiny find? Compare answers with a partner.	amount, repeated addition, operators, commutativity, what is the same/what is different? Can you see the link between the numbers?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Add mixed numbers with non-unit fraction	Tom adds a fraction to a mixed number by adding the fractions separately and then adding the wholes. Use Tom's method to work out the additions. $3 \frac{1}{5}+\frac{3}{5}$ $4 \frac{1}{3}+\frac{1}{3}$ $\frac{2}{7}+3 \frac{4}{7}$ $\frac{2}{9}+3 \frac{5}{9}$	Jack and Whitney have some juice. Jack drinks $2 \frac{1}{4}$ litres and Whitney drinks $2 \frac{5}{12}$ litres. How much do they drink altogether? Complete this using two different methods. Which method do you think is more efficient? Why?	What could the values of A and B be? $A \frac{5}{12}+\frac{B}{4}=5 \frac{1}{6}$ Compare answers with a partner.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply unit fractions by integer	Work out $\frac{1}{6} \times 4$ by counting in sixths. $\frac{1}{6} \times 4=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{4}{6}=\frac{2}{3}$ Use this method to work out: $2 \times \frac{1}{3} \quad \frac{1}{5} \times 3 \quad 6 \times \frac{1}{10}$	Amir is multiplying fractions by a whole number. $\frac{1}{5} \times 5=\frac{5}{25}$ Can you explain his mistake?	I am thinking of a unit fraction. When I multiply it by 4 it will be equivalent to $\frac{1}{2}$ When I multiply it by 2 it will be equivalent to $\frac{1}{4}$ What is my fraction? What do I need to multiply my fraction by so that my answer is equivalent to $\frac{3}{4}$? Can you create your own version of this problem?
Multiply nonunit fractions by an integer	Count the number of ninths to work $3 \times \frac{2}{9}$ \square : $:$ Use this method to work out: $\frac{3}{8} \times 2$ $\frac{5}{16} \times 3$ $4 \times \frac{2}{11}$	Whitney has calculated $4 \times \frac{3}{14}$ \square \square From the picture I can see that $4 \times \frac{3}{14}=\frac{12}{56}$ Do you agree? Explain why.	Use the digit cards only once to complete these multiplications.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply mixed numbers by integers	Use repeated addition to work out $2 \frac{2}{3} \times 4$ $2 \frac{2}{3} \times 4=2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}+2 \frac{2}{3}=8 \frac{8}{3}=10 \frac{2}{3}$ Use this method to solve: $2 \frac{1}{6} \times 3 \quad 1 \frac{3}{7} \times 2 \quad 3 \frac{1}{3} \times 4$	Jack runs $2 \frac{2}{3}$ miles three times per week. Dexter runs $3 \frac{3}{4}$ miles twice a week. Who runs the furthest during the week? Explain your answer.	Work out the missing numbers. Explain how you worked it out.
Fractions of an amount		5a. Circle the odd one out. A. $\frac{2}{3}$ of 2.4 kg B. $\frac{3}{8}$ of 3.2 kg C. $\frac{2}{3}$ of 1.8 kg Explain your reasoning.	Write a problem that matches the bar model. What other questions could you ask from this model?
Calculate a fraction of a quantity.			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Using fractions as operators by changing the order of multiplication	Complete: 2 lots of $\frac{1}{10}=$ \square $\frac{1}{10}$ of $2=$ 6 lots of $\square=3 \quad \square$ of $6=3$ 8 lots of $\frac{1}{4}=\square \quad \frac{1}{4}$ of $8=\square$	Which calculation on each row is easier? Why?	6b. Mo and Lily are using fractions as operators. Mo says, $\frac{3}{4}$ of $12=12$ lots of 3 \square $\frac{3}{4} \text { of } 12=12 \times \frac{3}{4}$ Who is correct? Convince me.	Which method would you use to complete these calculations: multiply the fractions or find the fraction of an amount? Explain your choice for each one. Compare your method to your partner. $\begin{aligned} & 25 \times \frac{3}{5} \text { or } \frac{3}{5} \text { of } 25 \\ & 6 \times \frac{2}{3} \text { or } \frac{2}{3} \text { of } 6 \\ & 5 \times \frac{3}{8} \text { or } \frac{3}{8} \text { of } 5 \end{aligned}$

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Recognise
decimals as
fractions
Tenths,
hundredths
and
thousandths.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect，Motivation，Cooperation，Kindness，Pride，Perseverance

\begin{tabular}{|c|c|c|c|}

\hline Rounding decimals to the nearest whole and tenth \& \begin{tabular}{l}
Complete the number lines and round the representations to the nearest whole number：

만
以古いい古

吕いい古いい古

 \&

Whitney is thinking of a number．

Rounded to the nearest whole her number is 4

Rounded to the nearest tenth her number is 3.8

Write down at least 4 different numbers that she could be thinking of．

 \&

A number between 11 and 20 with 2 decimal places rounds to the same number when rounded to one decimal place and when rounded to the nearest whole number？

What could this be？

Is there more than one option？

Explain why．
\end{tabular}

\hline Order and compare decimals （same number of decimal place）． \& \& \&

\hline
\end{tabular}

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Complements to make 1	Complete the part-whole models.	$0.333+\square=1$ I think the answer is 0.777 $\begin{gathered} \text { because } \\ 0.3+0.7=1 \\ 0.03+0.07=0.1 \\ 0.003+0.007=0.01 \end{gathered}$	How many different ways can you find a path through the maze, adding each number at a time, to make a total of one?								
			Start -0.02	0.01	0.05	0.08	0.3	0.04	-	0001	
			02	0.06	0.07	0.09	0001	0008	0.02	004	
			0008	0.04	02	0.02	0.05	0.06	007	0.6	
			0.5	ous	0.05	002	0.03	007	000	0.06	
			000	08	000	0.05	0015	0.01	oues	0007	
			00	02	0.08	003	0.19	0.0	0.04	005	
			0.0	0008	0.1	0.09	0008	0.8	0.02	002	
			0.0	0.03	0.0	022	0.07	0008	0.04	$009 \rightarrow 1$	
		Do you agree with Tommy? Can you explain what his mistake was?	Once you design y to solve?	hav	wn	ma	a w	may,	for	others	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Subtracting
wholes and
decimals

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply decimals by 10, 100 and 1000	Use the place value grid to multiply 3.24 by 10,100 and 1,000						Multiplying by 1,000 is the same as doing $10 \times 10 \times 10$ Do you agree with Mo? Explain your answer.	Using the digits 0-9 create a number with up to 3 decimal places, for example, 3.451 Cover the number using counters on your Gattegno chart.									
	Thousands	Hundeds	Tens	Ones		Hundredths											
				\bigcirc	\bigcirc	$\bigcirc 0^{\circ}$											
	When you multiply by \qquad you move the counters \qquad places to the left.																
							10,00	20.00	30.000	40,000	50,00	60,00	70.000	80.000	50.00		
							1.000	2000	3.000	4.000	5.000	6.000	7.000	8.000	0.000		
							100	220	300	400	500	200	700	800	500		
							10	${ }^{20}$	${ }^{30}$	40	so	${ }^{6}$	70	${ }^{\text {so }}$	∞		
							,	2	${ }^{3}$	4	5	-	7	-	$\stackrel{ }{ }$		
							0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	$0 \cdot 9$		
							0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		
							0001	0002	0003	0004	0.005	0.008	0.007	0008	0.000		
							Explore what happens when you multiply your number by 10 , then 100 , then 1,000 What patterns do you notice?										

We're Reaching for the Stars

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5				
Number: Percentages				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Introduction to percent and what percentage is.	Complete the sentence stem for each diagram. There are \qquad parts per hundred shaded. This is \qquad \%	Dora and Amir each have 100 sweets. Dora eats 65% of hers. Amir has 35 sweets left. Who has more sweets left? Explain your answer.	8b. Put the cards in order from largest to smallest.	Percent, percentage, what is percentages, per 100, \%, per cent $=$ per hundred, fraction, decimal,
Percentage as a fraction	7b. True or false? 42% is equivalent to $\frac{84}{200}$	Teddy says, To convert a fraction to a percentage, you just need to put a percent sign next to the numerator. Is Teddy correct? Explain your answer.	At a cinema, $\frac{4}{10}$ of the audience are adults. The rest of the audience is made up of boys and girls. There are twice as many girls as boys. What percentage of the audience are girls?	equivalent,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5				
Measurement: Perimeter				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Measure perimeter including rectilinear shapes	Measure the perimeter of the rectangles. \square Measure the perimeter of the shapes.	5a. Judy says, What mistake has Judy made? Prove it!	Activity Investigate different ways you can make composite rectilinear shapes with a perimeter of 54 cm .	perimeter, rectilinear, Orientation, Convert, what is perimeter? What are rectilinear shapes? Composite

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Perimeter
 of polygons. | | | |
| :--- | :--- | :--- | :--- | :--- |

Year 5				
Measurement: Area				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Calculate area of rectangles using formula	How many rectangles can you draw with an area of $\mathrm{x} \mathrm{cm}^{2}$ What is the area of this shape if: - each square is 2 cm in length? - each square is 3.5 cm in length?	6b. Josh has estimated the area of a rectangle. The estimated area of this rectangle is $24 \mathrm{~cm}^{2}$ because $4 \mathrm{~cm} \times 6 \mathrm{~cm}=24 \mathrm{~cm}^{2}$. Josh Is Josh correct? Prove it.	Investigate how many ways you can make different squares and rectangles with the same area of $84 \mathrm{~cm}^{2}$ What strategy did you use?	Area, squared $\left(\mathrm{cm}^{2}\right)$ How can you measure area? The amount of space taken up by a twodimensional shape. Working systematically, compare, greater than,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

5b. Each square represents $4 \mathrm{~cm}^{2}$. Ellie estimates the shape's area to be $7 \mathrm{~cm}^{2}$. Is she correct? Explain your answer.

Can you construct a 'Pirate Island' to be used as part of a treasure map for a new game? Each square represents $4 \mathrm{~m}^{2}$.

The island must include the following features and be of the given approximate measure:

- Circular Island $180 \mathrm{~m}^{2}$
- Oval Lake 58 m²
- Forests with a total area of $63 \mathrm{~m}^{2}$ (can be split over more than one space)
- Beaches with a total area of $92 \mathrm{~m}^{2}$ (can be split over more than one space)
- Mountains with a total area of $57 \mathrm{~m}^{2}$
- Rocky coastline with total area of $25 \mathrm{~m}^{2}$

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Year 5}

\hline \multicolumn{5}{|c|}{Measurement: Volume}

\hline Objective \& Skill it \& Apply it \& Deepen it \& Mathematical Talk

\hline Introduction to what volume is \& \begin{tabular}{l}
Take 4 cubes of length 1 cm . How many different solids can you make? What's the same? What's different?

Make these shapes.

 \&

6a. Amina is calculating the volume of her shape.

Is Amina correct? Explain your answer.
\end{tabular} \& How many possible ways can you make a cuboid that has a volume of $12 \mathrm{~cm}^{3}$? \& Volume, cubed, cm^{3}, same, difference, compare, estimate, capacity, how is capacity different to volume? Greatest, smallest, how

\hline
\end{tabular}

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare volume counting cubes	Work out the volume of each solid. Shape A Shape B Shape A has a volume of \qquad cm^{3} Shape B has a volume of \qquad cm^{3} Which has the greatest volume?	Shape A has a height of 12 cm . Shape B has a height of 4 cm . Dora says Shape A must have a greater volume. Is she correct? Explain your answer.	Amir, Whitney and Mo all build a shape using cubes. Mo has lost his shape, but knows that it's volume was greater than Whitney's, but less than Amir's. Whitney's What could the volume of Mo's shape be?	can we find the volume of this shape? What is the difference between volume and capacity?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

| Estimate |
| :--- | :--- |
| volume |

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Estimate capacity	Use five identical tumblers and some rice. - Fill a tumbler half full. - Fill a tumbler one quarter full. - Fill a tumbler three quarters full. - Fill a tumbler, leaving one third empty. - Fill a tumbler that has more than the first but less than the third, what fraction could be filled?	6b. Poppy has poured 550 ml into each of the containers. She says container C has the least capacity. A. B. C. Is this a sensible estimation? Explain your answer.	Give children a container. Using rice, water and cotton wool balls, can children estimate how much of each they will need to fill it? Discuss what is the same and what is different. Will everyone have the same amount of cotton wool? Will everyone have the same amount of rice? Will everyone have the same amount of water?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5				
Measurement: Converting units				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Convert kilograms and kilometres focus on use of 'kilo' meaning 1000	Compare the measurements using $<,>$ or $=$ $\begin{aligned} & 5 \mathrm{~kg} \bigcirc 4,500 \mathrm{~g} \quad 12 \mathrm{~kg} \bigcirc 12,000 \mathrm{~g} \\ & 3.7 \mathrm{~km} \bigcirc 370 \mathrm{~m} \quad 37,000 \mathrm{~m} \bigcirc 3.7 \mathrm{~km} \end{aligned}$	Eva is converting measurements. She says, Which conversions could Eva have completed? - $3 \mathrm{~km} \longrightarrow 3,000 \mathrm{~m}$ - $3,000 \mathrm{~m} \longrightarrow 3 \mathrm{~km}$ - $5,500 \mathrm{~g} \longrightarrow 5.5 \mathrm{~kg}$ - $2.8 \mathrm{~kg} \longrightarrow 2,800 \mathrm{~g}$ Explain your answer.	7b. Complete the circles so that each line adds up to 8.3 kg in every direction. Give your answer in kilograms.	Height, length, compare, measure, long, short, longer, shorter, narrow, wide, centimetre, metre, kilometre, taller, millimetre, nearest cm, measuring from 0 , how long is? How tall is? When would we measure in

	Respect, Motivation, Cooperation, Kindness, Pride, Perseverance		verance	
Convert milligrams, millilitres and millimetres focus on 'milli' meaning $\frac{1}{1000}$	Complete the conversions. $1,000 \mathrm{~mm}=1 \mathrm{~m}$ $5,000 \mathrm{~mm}=\square \mathrm{m}$ $1,000 \mathrm{ml}=11$ $50,000 \mathrm{~mm}=\square \mathrm{m}$ $\square \mathrm{ml}=31$ $500 \mathrm{~mm}=\square \mathrm{m}$ $300 \mathrm{ml}=\square 01$ $5,500 \mathrm{~mm}=\square \mathrm{m}$ $\square \mathrm{ml}=0.31$	True or False $32 \mathrm{~cm}+1.05 \mathrm{~m}=150 \mathrm{~cm}-0.13 \mathrm{~m}$ Explain your reasoning.	Ribbon is sold in 225 mm pieces. Teddy needs 5 metres of ribbon. How many pieces does he need to buy? Teddy would like to make either a bookmark or a rosette with his left over ribbon. Which can he make? To make 5 bookmarks you will need: 1.2 metres of ribbon 1 pair of scissors To make 1 mini rosette you will need: 4 pieces of ribbon cut to 35 mm A stapler	metres? When would we measure in cm ? estimating prior to measuring, convert, $100 \mathrm{~cm}=1 \mathrm{~m}$ $10 \mathrm{~mm}=1 \mathrm{~cm}$ $1000 \mathrm{M}=1 \mathrm{~km}$ Kilograms, kilo = 1000 Milligrams, metric units, imperial units, pounds, pints, inches, what does
Metric unitsconvert between different units of length and chose appropriate unit for measurement.	Measure the height of the piles of books in centimetres. Find the difference between the tallest and shortest pile of books in millimetres.	Dora says, One metre is 100 times bigger than one centimetre. One centimetre is 10 times bigger than one millimetre. So, one metre is 110 times bigger than one millimetre Is Dora correct? Explain your answer.	A 10 pence coin is 2 mm thick. Eva makes a pile of 10 pence coins worth £1.30 What is the height of the pile of coins in centimetres?	approximately mean? Units of time, days, years, months, hours, minutes, seconds, timetables, when do we use

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Introduced to Imperial units for measurement (pounds, pints, and inches).	One inch is approximately 2.5 centimetres 1 inch $\approx 2.5 \mathrm{~cm}$ Use the bar models to help with the conversions.		Jack's house has 3 pints of milk delivered 4 times a week. How many litres of milk does Jack have	timetables in everyday life?
		- Dora weighed 7.8 lbs when she was born. - Amir weighed 3.5 kg when he was born.		
	$33 \mathrm{in} \approx \square \mathrm{m}$	Explain your answer.	He uses about 200 ml of milk every day in his cereal. Approximately, how many pints of milk does Jack use for his cereal in a week?	
Convert units of time	Complete the conversions. 1 year $=$ \square months \square years $=24$ months \square years $=60$ months 2.5 years $=$ \square months 3 years 2 months = \square months \square years \square months $=75$ months	Can 21 days be written in weeks? Can 25 days be written in weeks? Explain your answers.	Teddy's birthday is in March. Amir's birthday is in April. Amir is 96 hours older than Teddy. What dates could Teddy and Amir's birthdays be?	

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measure angles in degrees	Use the sentence stems to describe the turns made by the minute hand. Compare the turns to a right angle. The turn from \qquad to ___ is \qquad than a right angle. It is an \qquad angle.	Which angle is the odd one out? 180° 45° 79° 270° Could another angle be the odd one out for a different reason?	Pick a starting point on the compass and describe a turn to your partner. Use the mathematical words to describe your turns: - Clockwise - Anti-clockwise - Degrees - Acute - Obtuse - Reflex - Right angle Can your partner identify where you will finish?	Group, sort, cube, cuboid, pyramid, sphere, cone, cylinder, circle, triangle, square, rectangle, shape, flat, curved, straight, round, corner (point, pointed) hollow, solid, face, side, edge, make, build, draw, direction, journey, left,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Measure angles using a protractor	Read the angles shown on the protractor. What's the same? What's different?	Who do you agree with? Explain why.	Use a cut out of a circle and place a spinner in the centre. - Point the arrow in the starting position above. - Move the spinner to try to make the angles shown on the cards below. - Check how close you are with a protractor.	right, up down, forwards, backwards, sideways, across, close, far, near, along, though, to, from, towards, away from, movement, side, roll, turn, full turn, whole turn, half turn, stretch, bend, size, bigger, larger, protractor, smaller, symmetrical,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Draw lines and angles accurately	Draw lines that measure: 4 cm and 5 mm 45 mm What's the same? What's different?
	Draw: - - angles of 45° - angles of 80° angles of 20°

Always, sometimes or never true?

- Two acute angles next to each other make an obtuse angle.
- Half an obtuse angle is an acute angle.
- 180° is an obtuse angle

Give examples to prove your answers.
right angle, horizontal, vertical, perpendicular, parallel, greater/ less than ninety degrees, ninety degrees, orientation, straight lines, prism, quarter turn, three quarter turn, pentagon,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate angles on a straight line		Jack is measuring two angles on a straight line. My angles measure 73° and 108° Explain why at least one of Jack's angles must be wrong.	- The total of angle f and g are the same as angle e - Angle e is 9° more than the size of the given angle. - Angle f is 11° more than angle g Calculate the size of the angles. Create your own straight line problem like this one for your partner.	hexagon, octagon, vertices, 2d, 3d, quadrilateral, dimensional, flat, acute, obtuse, curved faces, what is the difference between 2d and 3d shapes? Regular and irregular shapes, show me a vertex, vertical, horizontal, how have these

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate angles around a point	Complete the sentences. $\frac{1}{4}$ of a turn $=1$ right angle $=90^{\circ}$ $\frac{1}{2}$ of a turn $=\ldots$ right angles $=$ \qquad of a turn $=3$ right angles $=$ \qquad A full turn $=$ _ right angles $=$ \qquad			shapes been sorted? Repeating pattern, where would you position the ruler when measuring a line? Link to horizon, acute, obtuse, polygon, isosceles, scalene, equilateral, quadrilaterals, rhombus, parallelogram, trapezium, orientation, mirror line, 90

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate lengths and angles in shapes	Look at the square and the rectangle. What's the same? What's different?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Distinguish between regular and irregular polygons	Look at the 2D shapes. Decide whether the shape is a regular or irregular polygon. Measure the angles to check.	Always, sometimes or never true? - A regular polygon has equal sides but not equal angles. - A triangle is a regular polygon. - A rhombus is a regular polygon. - The number of angles is the same as the number of sides in any polygon. Explain your answers in full sentences.	Cut out lots of irregular shap pairs and sort they have sor different way Children could Carroll diagra understanding Has at least one right angle Has no righ	ferent re Ask child minto g them, ca ort them Venn to deep examp Ouanticera Regular polygon	r and to work in s. Once ey find a in? ams and eir Irregular polygon

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 5					
Geometry: Position and direction					
Objective	Skill it		Apply it	Deepen it	Mathematical Talk
Understand coordinates and their position on the $1^{\text {st }}$ quadrant	Plot the following points on the grid. $(3,5)$ $(4,4)$ $(0,2)$ $(4,0)$		Who do you agree with? Can you spot the mistake the other child has made?	 Annie is finding co-ordinates where the x coordinate and the y-coordinate add up to 8 . For example: $(3,5) \quad 3+5=8$ Find all of Annie's coordinates and plot them on the grid. What do you notice? Now do the same for a different total.	underneath, above, below, top, bottom, side, on, in, outside, inside, around, in front, behind, front, back, below, after, beside, next to, opposite, apart, between, middle, edge, centre, corner, direction,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Reflect objects using lines that are parallel to the axes - object and image	Which of the diagrams show reflections in the given mirror line?	Do you agree with Dora? Explain your thinking.	 The rectangle is pink and green. The rectangle is reflected in the mirror line. What would its reflection look like?					translation, position, reflect, parallel, what does translate mean? Mirror line,
	-							
	- $\quad \rightarrow$! \quad -							
	$\square \square \square \square$							

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

			- Recording data in PE e.g. distance thrown over time to show progression in throwing.	data? Scale, sum, comparison, difference, how are line graphs
Use line graphs to solve problems		Here is a line graph showing a bath time. Can you write a story to explain what is happening in the graph? How long did it take to fill the bath? How long did it take to empty? The bath doesn't fill at a constant rate. Why might that be?	Carry out your own exercise experiment and record your heart rate on a graph like the one shown in the section above. How does it compare? Can you make a set of questions for a friend to answer about your graph? Can you put the information into a table?	different to bar charts? Discrete data, two-way tables, timetables, how can we use a ruler to support us in reading line graphs? How do the vertical and horizontal lines support you in reading the line graphs, why are

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6				
Number: Place Value				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Numbers to a million	Complete the number sentences. $\begin{aligned} & >604,821=600,000+\ldots+\ldots+20+1 \\ & >-\quad=300,000+4,000+700+4 \\ & >2,000+8+60,000+500+700,000= \end{aligned}$	Are the statements true or false? Explain your answers.	The bar models are showing a pattern. Draw the next three. Create your own pattern of bar models for a partner to continue.	Fewer, more, equal, less than, greater than, number, pair, zero, one, two, three to twenty, and beyond, none, count (on/up/to/from/down), before, after, many, few, fewer, least, fewest, lesser, smallest, greater, same as, odd, even, units, ones, tens, ten more/less, digits, numeral, figure(s), compare, (in) order/ a different order, size, value, between,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare any number (integers)	Write $<,>$ or $=$ to make the statements correct.	Explain the mistake that Tiny has made.	\qquad $+80,000<$ half a million Complete the sentences. The missing number could be \qquad The missing number cannot be \qquad The missing number must be \qquad Are they the only answers?	number? In order to compare numbers what do you need to know? Numbers to ten million, when do you use place holders in numbers? Where do the
Round any number (integers)	Draw an arrow to show the approximate position of 8,640,000 on the number line. Round $8,640,000$ to the nearest million.	Whitney rounded 2,215,678 to the nearest million and wrote 2,215,000 Can you explain to Whitney what mistake she has made?		numbers to 1,000,000? How can you represent this rounding on a number line? What is the most appropriate way of rounding this number? How do you find the difference between two negative
Negative numbers counting forward and backwards through zero (finding intervals across zero).	What temperature does the thermometer show? If the temperature drops by $1^{\circ} \mathrm{C}$, what temperature will the thermometer show? What temperature is $5^{\circ} \mathrm{C}$ warmer than the temperature shown on the thermometer?	A company has plans to construct a building with floors above and below ground. Do you agree? Explain your answer.	Find different ways of completing the calculation. \qquad $+$ \qquad $=-2$	numbers?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Show remainders as decimals	Children show division with money (pounds and pence). Exchanging onto the decimal when having a remainder.	True or False Convince me Prove the answer	Work out the divisions. Compare methods with a partner.	multiply by, repeated addition, array, row, column, double, halve, share, share equally, group in pairs, threes etc., equal groups of, divide, divided by,
Short division with remainders - rounding remainders depending on question being asked.	650 children from a school go to a theme park. On the first ride, each car seats 4 children. How many cars are needed for the whole school to go on the first ride? On the second ride, each car seats 6 children. How many cars are needed for the whole school to go on the second ride?	Explain why you need x number of carts when not all of them will be full?	Children are faced with a range of problems in different situations where they decide whether rounding would be necessary.	left, left over, describe the rule, product, multiples of; four, eight, fifty and one hundred, scale up, multiplication facts up to 12×12, division facts, inverse, derive,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Division using factor knowledge	Find $720 \div 15$ by firstly dividing 720 by 5 and then dividing the result by 3 Why does dividing a number by 5 and then dividing by 3 give you the same answer as dividing the number by 15 ? Use this strategy to work out the divisions. Can any of the divisions be done in more than one way?	Explain why Tommy is wrong.	Compare the children's methods.	equal, unequal, why are we using the addition symbol? Multiplication, lots of, arrays, commutative, times tables, how many do you have to begin with? Division, what is the same/different about the groups?
Long division - 3 digit by 2 digit	Here is a different way of setting out a long division. Use this method to work out the divisions. $836 \div 11$ $798 \div 14$ $608 \div 19$	Tiny is correct. Find how much greater $1,950 \div 13$ is than $1,950 \div 15$	$6,120 \div 17=360$ Use the given calculation to work out the missing number. $6,480 \div-\quad=360$	Common multiples, What do you notice about the pattern? Comparing, inequality symbols, column multiplication, exchange, how do we record the exchange? How

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Recognise common factors of two numbers with increased confidence - can record in Venn diagram and tables	List the factors of 24 List the factors of 36 What are the common factors of 24 and 36 ?	A fruit stall has 49 pears and 56 oranges. The pieces of fruit are put into boxes with an equal number of pears or oranges in each box. Who is correct, Tiny or Jack? Explain how you know.	Brett has two pieces of string. One is 160 cm long and the other is 200 cm long. He cuts them both into smaller pieces. All the pieces are the same length. What are the possible lengths of the smaller pieces of string?	how do you find multiples of a number? Can a number be a multiple of more than one number? How do you find the factors of a number? Do factors always come in pairs? Prime number, composite number, why are square numbers called square numbers? Why are

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Order of operations (BODMAS)	Brackets, Order, Division, Multiplication, Addition and Subtraction. Match the counters to the calculations. $3+4 \times 2$ $3 \times 4+2$ $(3+4) \times 2$	Teddy has completed this calculation and got an answer of 5 $14-4 \times 2 \div 4=5$ Explain and correct his error.	Use the digits and symbols to write as many calculations as you can that give different answers. Is it possible to make every number from zero to 20 ?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Solve multistep questions involving the four operations	- The total mass of apples in a box is 25 kg . The total mass of oranges in a box is 24 kg . - There are 32 boxes of apples and 25 boxes of oranges in a supermarket. What is the total mass of apples and oranges? - A customer orders 300 kg of apples and 600 kg of oranges. How many boxes of fruit will the customer receive?	What is the best way to solve this calculation? Explain why you think that. A coach has 55 seats and a minibus has 17 seats. 431 people from a school go on a trip. The school books 6 coaches and 8 minibuses. How many spare seats will there be?	24 bottles of water cost $£ 15$ How many bottles of water can you buy for $£ 30$? How many bottles of water can you buy for $£ 300$? How many bottles of water can you buy for $£ 525$? How much will 600 bottles of water cost?

Year 6

Number: Fractions

Objective	Skill it	Apply it	Deepen it	Mathematical Talk

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Simplify fractions using previous knowledge of equivalent fractions for support.	Alex is simplifying $\frac{8}{12}$ by dividing the numerator and denominator by their highest common factor. Factors of $8: 1,2,4,8$ Factors of $12: 1,2,3,4,6,12$ 4 is the highest common factor. Use Alex's method to simplify these fractions: $\begin{array}{lllll} \frac{6}{9} & \frac{6}{18} & \frac{10}{18} & \frac{10}{15} & \frac{15}{50} \end{array}$	Tommy is simplifying $4 \frac{12}{16}$ $4 \frac{12}{16}=1 \frac{3}{4}$ Explain Tommy's mistake.	Sort the fractions into the table.			tenths, equivalent decimals and fractions, Whole, equal parts, four equal parts, one half, two halves, a quarter, two quarters, fraction, three quarters, one third, a third, equivalence, equivalent, unequal, are the parts equal? How do you know? Splitting a whole into two
			Simplifies to $\frac{1}{2}$	Simplifies to $\frac{1}{3}$	Simplifies to $\frac{1}{4}$	
			$\frac{5}{15} \frac{2}{4} \frac{4}{16}$	$\frac{8}{16} \frac{5}{10}$	$\frac{6}{12} \frac{2}{8}$	
			Can you see a numbers in ea What is the re numerators and Can you add th each column?	patterns b column? tionship bet denominat ree more fra	ween the een the s? tions to	
			Complete the patterns: When a fractio the numerator denominator.	entence to is equivale \qquad the	scribe the to \qquad	
Equivalent fractions on a number line.						

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Count forwards and backwards on a number line in fractions.	Jack is counting in quarters. He writes each number on a number line. Complete the number line.	Plot the sequences on a number line. $\begin{aligned} & 3 \frac{1}{2}, 4,4 \frac{1}{2}, 5,5 \frac{1}{2}, 6 \\ & \frac{13}{4}, \frac{15}{4}, \frac{17}{4}, \frac{19}{4}, \frac{21}{4}, \frac{23}{4} \\ & 5 \frac{5}{8^{\prime}}, 5 \frac{1}{8}, 4 \frac{5}{8}, 4 \frac{1}{8}, 3 \frac{5}{8}, 3 \frac{1}{8} \\ & 3 \frac{1}{8}, 3 \frac{3}{8}, 3 \frac{5}{8}, 3 \frac{7}{8}, 4 \frac{1}{8}, 4 \frac{3}{8} \end{aligned}$ Which sequence is the odd one out? Explain why. Can you think of a reason why each of the sequences could be the odd one out?	How many ways can you show a difference of one quarter on the number line?	equal parts, 1/2, 1/3, what does the 1 represent, what does the 3 represent. How many thirds make a whole? 1/4, unit fraction, non-unit fraction, numerators, denominators, $3 / 4$, tenths, decimals, is a

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Compare fractions (denominators)	Aisha is comparing $\frac{5}{6}$ and $\frac{3}{4}$ by finding the first common multiple of the denominators.
	$\frac{5}{6}=\frac{10}{12}$ $\frac{3}{4}=\frac{9}{12}$ $\frac{10}{12}>\frac{9}{12}$ so $\frac{5}{6}>\frac{3}{4}$
Use Aisha's method to compare the fractions.	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Subtract fractions (denominators not multiples)	Annie is calculating $\frac{7}{9}-\frac{1}{2}$ She finds the first common multiple of 9 and 2 first common multiple of 9 and 2 is $18 \frac{7}{9}-\frac{1}{2}=\frac{14}{18}-\frac{9}{18}=\frac{5}{18}$ Use this method to find the differences. $\frac{2}{3}-\frac{1}{5}$ $\frac{4}{9}-\frac{1}{6}$ $\frac{5}{7}-\frac{1}{3}$ $\frac{11}{12}-\frac{3}{8}$	5b. Which calculation is the odd one out? A. $\frac{4}{5}-\frac{8}{12}$ B. $\frac{2}{3}+\frac{1}{7}$ c. $\frac{4}{5}-\frac{2}{3}$ Explain how you know.	A car is travelling from Halifax to Brighton. In the morning, it completes $\frac{2}{3}$ of the journey. In the afternoon, it completes $\frac{1}{5}$ of the journey. What fraction of the journey has been travelled altogether? What fraction of the journey is left to travel? If the journey is 270 miles, how far did the car travel in the morning? How far did the car travel in the afternoon? How far does the car have left to travel?	for you need to convert? Multiples, factors, how can you partition the mixed numbers? Multiply, divide, when I multiply is my answer getting greater or
Add mixed numbers Add Mixed numbers and fractions.	What method would you use to work out the additions? \square $3 \frac{2}{7}+\frac{4}{7}$ $3 \frac{2}{7}+4 \frac{4}{7}$ How are they similar? How are they different?	8a. Olivia says, 1 think that $\frac{10}{7}+\frac{10}{4}=3 \frac{13}{14}$. Is Olivia correct? Convince me.	On Saturday and Sunday, Nijah ran a total of $4 \frac{1}{2} \mathrm{~km}$. Suggest how far Nijah ran on each day. Find more than one answer.	smaller than each fraction? How many equal parts are there altogether? What is the value of each equal part?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Multiply fractions by fractions	Whitney is using diagrams to represent multiplying fractions. Shade the diagrams to work out the multiplications. $\frac{1}{3} \times \frac{1}{2}=$ \qquad $\frac{1}{4} \times \frac{1}{2}=$ \qquad $\frac{1}{5} \times \frac{1}{4}=$ \qquad Can any of your answers be simplified?	Alex says, $\frac{1}{4} \times \frac{1}{2}$ is the same as $\frac{1}{2}$ of a quarter. Do you agree? Explain why.	Find the missing numbers. Is there more than one answer?
Divide fractions by integers (numerator is a multiple off the whole)	Complete the divisions. $-\frac{6}{11} \div 3 \quad>\frac{15}{17} \div 5 \quad>\frac{49}{50} \div 7 \quad>\frac{96}{101} \div 12$	Dividing by 2 is the same as finding half of a number, so $\frac{4}{11} \div 2$ is the same as $\frac{1}{2} \times \frac{4}{11}$ Do you agree with Tiny? Explain your answer.	What could the missing numbers be? $\frac{\square}{21} \div 4=\frac{\square}{21}$ Can any of your answers be simplified?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6				
Number: Decimals				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Describe value of up to 3 d.p.	Complete the sentences.		Four children are thinking of four different numbers. Teddy: "My number has four hundredths." Alex: "My number has the same amount of ones, tenths and hundredths." Dora: "My number has less ones that tenths and hundredths." Jack: "My number has 2 decimal places." Match each number to the correct child.	Decimals, tenths, hundredths, thousandths, equivalent decimals and fractions, order, compare, place value, what is a tenth? Where would we use tenths in real life? How many tenths are equivalent to a whole? Number line, relevant scale, divide by 10 - split into 10
Round decimals				equal parts, Gettegno chart,
Add and subtract decimals.				zero as a place holder, part, whole, decimal

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Division to solve problems.	Mrs Forbes has saved £4,960 She shares the money between her 15 grandchildren. How much do they each receive?	Jack and Rosie are both calculating the answer to $147 \div 4$ Rosie says, The answer is 36.75 Who do you agree with?	Each division sentence can be completed using the digits below. 1 2 3 4 \square 5 6 \square $3 \div$ \square $=0.26$ 12. \square \div \square $=4.2$ 4. \square $8 \div$ \square $=1.07$
Multiply and divide decimals in context.			

Year 6

Number: Percentages

> Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6				
Number: Algebra				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Find a rule - one step function	Here is a function machine. - What is the output if the input is 2 ? - What is the output if the input is 7.2 ? - What is the input if the output was 20? - What is the input if the output was 22 ?	5a. If the function for the number of wizards is the number of ninjas $\times 7$, how many wizards are there? Explain your reasoning.	Eva has a one-step function machine. She puts in the number 6 and the number 18 comes out. What could the function be? How many different answers can you find?	Function, input, output, algebra, rile, expressions, substitution, values, equations, what do you think one-step function means? What

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance
Find a rule

- two step
function

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Forming expressions	Mo uses cubes to write expressions for function machines. Use Mo's method to represent the function machines. What is the output for each machine when the input is a ?	Amir inputs m into these function machines. He says the outputs of the machines will be the same. Do you agree? Explain your answer.	This function machine gives the same output for every input. For example if the input is 5 then the output is 5 and so on. What is the missing part of the function? What other pairs of functions can you think that will do the same?	integer values, trial and improvement, working systematically,
Substitution	' If $\sum=7$ and $\circlearrowleft=5$, what is the value of: $\hat{w}+0+0$ If $a=7$ and $b=5$ what is the value of: $a+b+b$ What is the same and what is different about this question?	$x=2 c+6$ Is Whitney correct? Amir says, $\text { When } c=5, x=31$	Here are two formulae. $\begin{aligned} & p=2 a+5 \\ & c=10-p \end{aligned}$ Find the value of c when $a=10$	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Use simple formulae to work out values	Which of the following is a formula? $P=2 l+2 w$ $3 d+5$ $20=3 x-2$ Link to area and volume.	6a. The formula for calculating speed (s) is distance (d) divided by time (t). Which two formulae represent this? A. $s=d \div t$ B. $s=t \div d$ C. $s=\frac{d}{t}$ Explain how you know.	The rule for making scones is use 4 times as much flour (f) as butter (b). Which is the correct formula to represent this? (A) (B) $f=\frac{b}{4} \quad f=4 b$ (C) (D) $f=b+4 \quad 4 f=b$ Explain why the others are incorrect.

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

with two
unknowns.

Year 6				
Number: Ratio				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Understand that a ratio shows the relationship between two values - using ratio language	Complete the sentences. For every two blue flowers there are \qquad pink flowers. For every blue flower there are \qquad pink flowers.	Whitney lays tiles in the following pattern If she has 16 red tiles and 20 yellow tiles remaining, can she continue her pattern without there being any tiles left over? Explain why.	8a. Euan has some red, blue and yellow counters. There are 4 blue counters for every red counter, and 16 counters altogether. Write all the possible sentences to show how many of each counter Euan may have.	Ratio, relationship, value, fractions, symbol, scale, scale factors, enlarge, proportion, calculate,
See the link between ratio and fractions	The ratio of red counters to blue counters is $1: 2$ What fraction of the counters is blue? What fraction of the counters is red? $\frac{1}{2}$	Which is the odd one out? Explain your answer.	7b. Spencer is baking biscuits using oats, sugar and butter. The ingredients weigh $1,200 \mathrm{~g}$ in total. Write 5 pairs of fractions to show the possible ratio of oats to sugar to butter. Show the fractions in their simplest form.	relationship between values, comparison, quantities, ratio symbol, what does the : symbol mean in the context

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Know the ratio symbol	Complete: The ratio of red counters to blue counters is \square : \square The ratio of blue counters to red counters is \square : \square	Tick the correct statements. - There are two yellow tins for every three red tins. - There are two red tins for every three yellow tins. - The ratio of red tins to yellow tins is 2:3 - The ratio of yellow tins to red tins is 2:3 Explain which statements are incorrect and why.	In a box there are some red, blue and green pens. The ratio of red pens to green pens is 3:5 For every 1 red pen there are two blue pens. Write down the ratio of red pens to blue pens to green pens.	of ration? How can we represent the ratio using a bar model? For every... there are... what does similar mean?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate ratio	A farmer plants some crops in a field. For every 4 carrots he plants 2 leeks. He plants 48 carrots in total. How many leeks did he plant? How many vegetables did he plant in total?	5a. A florist is arranging flowers. She wants to arrange the flowers using the ratio 3 yellow flowers to every 1 red flower. Have the flowers been arranged correctly? Explain your answer.	Annie is making some necklaces to sell. For every one pink bead, she uses three purple beads. Each necklace has 32 beads in total. The cost of the string is $£ 2.80$ The cost of a pink bead is 72 p . The cost of a purple bead is 65 p . How much does it cost to make one necklace?

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate metric measures	Esther drinks 250 ml of juice. Kim drinks 3 times as much. - How much does Kim drink? Give your answer in litres. - How much do Esther and Kim drink in total?	6a. A piece a ribbon wrapped around a jar measures 10 cm . Diana buys a length of ribbon and says, Is she correct? Explain your answer.	Teddy, Annie and Jack cycle as far as they can in one hour. - Teddy cycles $\frac{5}{6}$ of the distance that Jack cycles. - Annie cycles $1,350 \mathrm{~m}$ less than Teddy. - Jack cycles 5.4 km. How far does Teddy cycle? How far does Annie cycle? How far do the three children cycle in total?	long is? How tall is? When would we measure in metres? When would we measure in cm ? estimating prior to measuring, convert, $100 \mathrm{~cm}=1 \mathrm{~m}$ $10 \mathrm{~mm}=1 \mathrm{~cm}$ $1000 \mathrm{M}=1 \mathrm{~km}$ Kilograms, kilo $=1000$ Milligrams,
Miles and kilometres approximate conversions	Use the fact 5 miles $\approx 8 \mathrm{~km}$ to complete the conversions. - 10 miles \approx \qquad km - $32 \mathrm{~km} \approx$ \qquad miles - 15 miles \approx \qquad km - $40 \mathrm{~km} \approx$ \qquad miles - 25 miles \approx \qquad km - $64 \mathrm{~km} \approx$ \qquad miles	Here are Tiny's workings to convert 5 miles to kilometres. Explain Tiny's mistake.	Mo cycles 45 miles over the course of 3 days. On day 1, he cycles 16 km . On day 2, he cycles 10 miles further than he did on day 1 How far does he cycle on day 3 ? Give your answer in miles and in kilometres.	metric units, imperial units, pounds, pints, inches, what does approximately mean? Units of time, days, years, months,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6					
Measurement: Perimeter, Area and Volume					
Objective	Skill it		Apply it	Deepen it	Mathematical Talk
Calculate the perimeter of rectilinear/compound shapes - including those with missing lengths	10b. Calculate the perimeter.	0.12m	9b. Connie says, Is Connie correct? Explain your answer.	8a. A farmer is building a new barn. It needs to be the following shape and size: Perimeter 124 m All four sides need to include half metres. What could the length of each side be in metres?	perimeter, rectilinear, Orientation, Convert, what is perimeter? What are rectilinear shapes? Composite,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Explore that shapes can have a different perimeter to area.	Look at the shapes below.	Do any of the shapes have the same area? Do any of the shapes have the same perimeter?	True or false? Two rectangles with the same perimeter can have different areas. Explain your answer.	Tommy has a $8 \mathrm{~cm} \times 2 \mathrm{~cm}$ rectangle. He increases the length and width by 1 cm .			Area, squared $\left(\mathrm{cm}^{2}\right)$ How can you measure area? The amount of space taken up by a twodimensional shape. Working systematically, compare, greater than, less than, equal to,
				Length	Width	Area	
				8	2		
				9	3		
				He repeats w	$4 \mathrm{~cm} \times$	rectangle.	
				Length	Width	Area	
				4	6		
				What do you notice happens to the areas? Can you find any other examples that follow this pattern? Are there any examples that do not follow the pattern?			

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Find the area of a triangle using formulalxh 2	Use knowledge of finding area of a rectangle If l represents length and h represents height: Area of a rectangle $=l \times h$ Use this to calculate the area of the rectangle. What do you need to do to your answer to work out the area of the triangle? Therefore, what is the formula for the area of a triangle? To calculate the height of a triangle, you can use the formula: base \times height $\div 2$ Choose the correct calculation to find the area of the triangle. - $10 \times 5 \div 2$ - $10 \times 4 \div 2$ - $5 \times 4 \div 2$	Calculate the area of the shaded triangle. Mo says, I got an answer of $72 \mathrm{~cm}^{2}$ Do you agree with Mo? If not, can you spot his mistake?	$\text { Area }=54 \mathrm{~cm}^{2}$ What could the length and the height of the triangle be? How many different integer possibilities can you find?	between volume and capacity? Carroll diagram, is the perimeter and area the same? How many squares can you see? Can you explain how you worked out the volume? What did you
Find the area of a parallelogram	Use knowledge of finding area of rectangle Approximate the area of the parallelogram by counting squares. Now cut along the dotted line. Can you move the triangle to make a rectangle? Calculate the area of the rectangle.	Dexter thinks the area of the parallelogram is $84 \mathrm{~cm}^{2}$. What mistake has Dexter made? What is the correct area?	Teddy has drawn a parallelogram. The area is greater than $44 \mathrm{~m}^{2}$ but less than $48 \mathrm{~m}^{2}$. What could the base length and the perpendicular height of Teddy's parallelogram be?	

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6					
Geometry: Position and direction					
Objective	Skill it		Apply it	Deepen it	Mathematical Talk
Read and plot coordinates on the first quadrant	Whitney plots three coordinates. Write down the coordinates of points A, B and C .		Mo has written the coordinates of points A, B and C . $A(1,1) \quad B(2,7) \quad C(3,0)$ Mark Mo's work and correct his mistakes. Explain why Mo could not make the same mistake for point A as he made for points B and C .	Eva is drawing a trapezium. She wants her final shape to look like this: Eva uses the coordinates (2, 4), (4,5), (1, 6) and $(5,6)$. Will she draw the shape that she wants to? If not, can you correct her coordinates?	underneath, above, below, top, bottom, side, on, in, outside, inside, around, in front, behind, front, back, below, after, beside, next to, opposite, apart, between, middle, edge, centre,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Read and plot coordinates on the four quadrants	Dora plotted three coordinates. Write down the coordinates of points A, B and C .		4b. Max thinks that the coordinates below make a square.	A is the point $(0,-10)$ B is the point $(8,0)$ The distance from A to B is two thirds of the distance from A to C . Find the coordinates of C .	corner, direction, journey, left, right, up, down, forwards, backwards, sideways, across, close, far, near, along, through, to from, towards, away from, movement, side, roll, turn,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Translate shapes and points in all four quadrants	Use the graph to describe the translations. One has been done for you. From A to B translate 8 unit to the left. From C to D translate _ units to the right and _ units down. From D to B translate 6 units to the \qquad and 7 units \qquad From A to C translate \qquad units to the \qquad and _ units -. \qquad	Spot the Mistake. The green triangle has been translated 6 units to the left and 3 units down.	8a. Here are the coordinates of a shape: $(4,2),(4,10),(10,10),(10,6),(12,6),(12$, 2). If one coordinate translates to $(-3,-3)$, what could the other coordinates be? Find 2 possibilities.	whole turn, half turn, stretch, bend, rotation, clockwise, coordinates, translation, quadrant, x axis, y axis, Over, under, three-quarter turn, quarter turn, stretch, bend, rotation,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6				
Geometry: Properties of shape				
Objective	Skill it	Apply it	Deepen it	Mathematical Talk
Measure angles with a protractor	Identify the type of angle, and measure the angle using a protractor.	Alex measures this angle: She says it is 130° Explain what she has done wrong.	Cut out a circle and draw a line from the centre to the edge. Add a spinner in the centre. Put the arrow in the starting position as shown above. Turn over a flash card with an angle on. Estimate the given angle by moving the spinner. Check how close you are using a protractor.	Group, sort, cube, cuboid, pyramid, sphere, cone, cylinder, circle, triangle, square, rectangle, shape, flat, curved, straight, round, corner (point, pointed)

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Introduce angles and their link to right angles	There are \square degrees in a right angle. There are \square right angles on a straight line. There are \square degrees on a straight line.	Dora and Eva are asked how many degrees there are between North-West and South-West. Dora says, Eva says, Who do you agree with? Explain why.	If it takes 60 minutes for the minute hand to travel all the way around the clock, how many degrees does the minute hand travel in: - 7 minutes - 12 minutes How many minutes have passed if the minute hand has moved 162° ?	hollow, solid, face, side, edge, make, build, draw, direction, journey, left, right, up down, forwards, backwards, sideways, across, close, far, near, along, though, to, from, towards, away from, movement, side, roll, turn, full turn, whole turn, half turn,

		Respect, Motivation, Cooperation, Kindness, Pride, Perseverance		
Calculate angles on a straight line and around a point	Calculate the missing angles.	There are five equal angles around a point. What is the size of each angle? Explain how you know.	Here is a pie chart showing the colour of cars sold by a car dealer. The number of blue cars sold is equal to the total number of red and green cars sold. The number of red cars sold is twice the number of green cars sold. Work out the size of the angle for each section of the pie chart.	stretch, bend, size, bigger, larger, protractor, smaller, symmetrical, right angle, horizontal, vertical, perpendicular, parallel, greater/ less than ninety degrees, ninety degrees,
Vertically opposite angles	Find the size of the missing angles.	The diagram below is drawn using three straight lines. Whitney says that it's not possible to calculate all of the missing angles. Do you agree? Explain why.	7a. If angle b measures 79° and angle c measures 48°, what is the size of angle d ?	orientation, straight lines, prism, quarter turn, three quarter turn, pentagon, hexagon, octagon, vertices, 2d, 3d, quadrilateral, dimensional, vertically

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate angles in a quadrilateral using known information		Jack says, All quadrilaterals have at least one right angle. Draw two different shapes to prove Jack wrong. Measure and mark on the angles.	How many quadrilaterals can you make on the geoboard? Identify the names of the different quadrilaterals. What do you notice about the angles in certain quadrilaterals? If your geoboard was 4×4, would you be able to make any different quadrilaterals?	been sorted? Repeating pattern, where would you position the ruler when measuring a line? Link to horizon, acute, obtuse, reflex, polygon, isosceles, scalene,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Calculate interior angles in polygons using known information	Use the same method to complete the table.					6b. The sum of the interior angles of any octagon will always equal 1080°. Convince me that it is true.	Use the clues to work out what shape each person has.
	Shape	No. of sides	$\begin{gathered} \text { No. of } \\ \text { triangles } \end{gathered}$	$180 \times$ no. of triangles	Sum of internal angles		
	Quadrilateral	4	2	180×2	360°		2 ${ }^{\text {a }}$ triangles.
	Pentagon	5	3				The
	Hexagon						more than 540° but less
	Heptagon						than 900°
	What do you notice? Can you predict the angle sum of any other polygons?						
						Convince me that it is true.	What is the sum of the interior angles of each shape?
Draw shapes accurately	On a piece of squared paper, accurately draw the shapes. - A square with perimeter 16 cm . - A rectangle with an area of $20 \mathrm{~cm}^{2}$. - A right-angled triangle with a height of 8 cm and a base of 6 cm . - A parallelogram with sides 3 cm and 5 cm .					5a. Asha says, Is Asha correct? Explain why. Draw a regular pentagon with sides of 5 cm . Check the size of each interior angle.	Eva has drawn a scalene triangle. Angle A is the biggest angle. Angle B is 20° larger than angle C . Angle C is the smallest angle, and it is 70° smaller than angle A .
						Use a bar model to help you calculate the size of each angle, then construct Eva's triangle.	
						Is there more than one way to construct the triangle?	

equilateral, quadrilaterals, rhombus, parallelogram, trapezium, orientation, mirror line, 90 degrees, 180 degrees, 360 degrees, what is an angle? What is the size of the angle? What unit do we measure angles in? Angles around a point, how many right angles are there in a full turn? What is a polygon? Protractor, interior, exterior, what

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Identify 3 dimensional shapes in nets	What three-dimensional shape can be made from these nets? Identify and describe the faces of each shape.	Dora thinks that this net will fold to create a cube. Do you agree with Dora? Explain your answer.	Use Polydron to investigate how many different nets can be made for a cube. Is there a rule you need to follow? Can you spot an arrangement that won't work before you build it? How do you know why it will or won't work? Can you record your investigation systematically?	do the interior angles of a triangle total? Does the size of the triangle matter? Hatch marks, angles in a triangle = 180 degrees, angles in a quadrilateral $=360$ degrees, nets,

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Year 6				
Statistics (can link across curriculum e.g. COMPUTING/Topic/P.E)				
Objective	Skill it	Apply it	Deepen it	Mathematical talk
Read and interpret line graphs	Provide questions where children have to retrieve information from a line graph. - What is the same/different about the two line graphs? - At what time of the day was the most rainfall recorded?	Explain the mistake made on the line graph. e.g. through miss labelling or a miss reading of information.	Write a story and 3 questions for each of the 3 graphs below.	Where might you see a line graph in real life? How can you make sure you rea the graph accurately? Line graphs, circle, pie charts, radius, diameter, circumference, compass, x and y axis, intervals,

We're Reaching for the Stars

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Use line graphs to solve problems		Explain the mistake made on the line graph. e.g. through miss labelling or a miss reading of information.	What could this graph be showing? Label the horizontal and vertical axes to show this. Is there more than one way to label the axes?	symbol be worth? What will each block be worth? read and interpret, construct, tables, one and two step problems, what are the different ways to present data? Scale, sum, comparison, difference, how are line graphs different to bar charts? Discrete
Dual bar charts				data, two-way

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Illustrate and name parts of a circle	Using the labels complete the diagram: Radius Diameter Centre Circumference	Do you agree? Explain your reasoning.	Here are 2 circles. Circle A is blue; Circle B is orange. The diameter of Circle A is $\frac{3}{4}$ the diameter of Circle B. If the diameter of Circle B is 12 cm , what is the diameter of Circle A? If the diameter of Circle A is 12 cm , what is the radius of Circle B ? If the diameter of Circle B is 6 cm , what is the diameter of Circle A? If the diameter of Circle A is 6 cm , what is the radius of Circle B?	tables, timetables, how can we use a ruler to support us in reading line graphs? How do the vertical and horizontal lines support you in reading the line graphs, why are column and row headings important in a table? If I am finding the difference what operation do I

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

			Respect, Motivation, Cooperation, Kindness, Pride, Perseverance			rance	
Work out the mean	Here is a method Use this method average for the n eaten by each ch $\text { Mean }=T$	to find the me Total llasses of lice drank a to calculate the umber of slices hild. $\text { Cotal } \div \text { nt }$	n. If each friend drank the same no. of glasses 8 $0.0 \square$ - $00 \square$ mean of pizza umber of i	The mean number of glasses of juice drunk is 3 20020 items.	Children provided with an answer whereby an error has been made. They find the mistake and are able to correct successfully explain the misconception made.	Work out the age of each member of the family if: Mum is 48 years old. Teddy is 4 years older than Jack and 7 years older than Alex. Calculate the mean age of the whole family.	
Year 6							
Enterprise							
Objective	Mathematical talk						
What is meant by enterprise?	Enterprise, money, profit, loss, market, advertisement, critical consumer, loan, debt, tax, economic, sustainable, percentages, decimals, statistics, marketing.						
Develop enterprising skills							
Recognise the role money							

plays in their own and others' lives
Manage money
Recognise how to be a critical consumer
Develop initial understanding of; loan, interest, debt, tax Recognise how resources can be allocated in different ways and how these economic choices affect individuals and sustainability of the environment. Solve problems using measure (money), percentages (profits),

Respect, Motivation, Cooperation, Kindness, Pride, Perseverance

decimals,
statistics
Listen and respond to others appropriately Use spoken language to develop understanding through speculating, hypothesising, imagining and exploring ideas. Participate in discussions/ presentations/ debates Gain, maintain and monitor the interest of the listener.

[^0]: Give each child a small object such as a bean bag or welly. In small groups or pairs, challenge the children to throw the object as far as they can
 Who has thrown their item the furthest? How could we check?

[^1]: There are \qquad possibilities.

 How many of the ways contain an apple?

